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This paper reviews current literature on the projected effects of climate change on marine fish and shellfish, their fisheries, and fishery-
dependent communities throughout the northern hemisphere. The review addresses the following issues: (i) expected impacts on ecosys-
tem productivity and habitat quantity and quality; (ii) impacts of changes in production and habitat on marine fish and shellfish species
including effects on the community species composition, spatial distributions, interactions, and vital rates of fish and shellfish; (iii) impacts
on fisheries and their associated communities; (iv) implications for food security and associated changes; and (v) uncertainty and modelling
skill assessment. Climate change will impact fish and shellfish, their fisheries, and fishery-dependent communities through a complex suite
of linked processes. Integrated interdisciplinary research teams are forming in many regions to project these complex responses. National
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and international marine research organizations serve a key role in the coordination and integration of research to accelerate the produc-
tion of projections of the effects of climate change on marine ecosystems and to move towards a future where relative impacts by region
could be compared on a hemispheric or global level. Eight research foci were identified that will improve the projections of climate impacts
on fish, fisheries, and fishery-dependent communities.

Keywords: climate change, fish, fisheries, fisheries-dependent communities, uncertainty, vulnerability assessment.

Introduction
The marine science community now regularly uses climate change
projections released by the Intergovernmental Panel on Climate
Change (IPCC; IPCC, 2007) to make qualitative and quantitative
projections of marine ecosystem responses to environmental
changes associated with the accumulation of greenhouse gases in
the atmosphere (e.g. climate change and ocean acidification).
These projections indicate that climate change will affect fish, fish-
eries, and fisheries-based economies around the globe as well as
broader components of marine ecosystems (ACIA, 2005; Allison
et al., 2009; Cochrane et al., 2009; Drinkwater et al., 2010;
Blanchard et al., 2012; Doney et al., 2012; Merino et al., 2012).
The potential implications of climate change for marine ecosystems,
and goods and services derived from marine ecosystems, have
prompted the formation of integrated interdisciplinary research
partnerships to quantify these impacts in many regions throughout
the world (Figure 1; Barange et al., 2011; Wiese et al., 2012). Several
international organizations [e.g. the International Council for
Exploration of the Sea (ICES), the North Pacific Marine Science
Organization (PICES), the Intergovernmental Oceanographic
Commission (IOC), the World Meteorological Organization
(WMO), and the Food and Agriculture Organization of the
United Nations (FAO)] and international research programmes
(e.g. Ecosystems Studies of Sub-Arctic Seas, ESSAS) have sponsored
symposia focused on climate change effects on marine ecosystems to
encourage international research partnerships and to widely dis-
seminate new research findings (Valdés et al., 2009; Hollowed
et al., 2011; Drinkwater et al., 2012; Salinger et al., in press).

In this paper, we synthesize existing information to elucidate the
expected effects of climate change on fish and fisheries to guide
future research. Other international (e.g. the IPCC) and national
climate assessment teams have provided a comprehensive evalu-
ation of climate change impacts on marine and terrestrial ecosys-
tems on regional (e.g., Arctic Climate Impact Assessment; ACIA,
2005; Arctic Monitoring Assessment Program; AMAP, 2011; and
National Climate Assessment; Howard et al., 2013) and global
scales (IPCC, 2007). Our synthesis focuses on the implications
on a limited set of components of marine ecosystems and the
goods and services they provide. We consider the following
themes: (i) expected impacts on ecosystem productivity and
habitat quantity and quality; (ii) impacts of changes in production
and habitat on marine fish and shellfish species including effects on
the community species composition, spatial distributions, interac-
tions, and vital rates of fish and shellfish; (iii) impacts on fisheries
and their associated communities; (iv) implications for food secur-
ity and associated changes; and (v) uncertainty and modelling skill
assessment. Using this synthesis of information, key research activ-
ities are identified that may serve to guide future investigations.

Impacts on ecosystem productivity and habitat
In a world with high atmospheric CO2 levels, global physical models
project increased sea temperatures in many regions, changes in loca-
tions and magnitudes of wind patterns and ocean currents, loss of

sea ice in Polar Regions, and a rise in the sea level (IPCC, 2007).
The accumulation of CO2 in the atmosphere and associated
climate changes is expected to cause ocean acidification and expan-
sion of oligotrophic gyres (Doney et al., 2012). These physical and
chemical changes are expected to result in shifts in the timing,
species composition, and magnitude of seasonal phytoplankton
production (Figure 2; Cochrane et al., 2009; Wang and Overland,
2009; Polovina et al., 2011; Doney et al., 2012). Changes in phyto-
plankton species composition may include shifts to smaller sizes
that could lengthen food chains and increase assimilation losses to
higher trophic levels (Morán et al., 2010; Bode et al., 2011).These
physical, and resulting biological, changes will occur at different
spatial and temporal scales throughout the world’s oceans
(Burrows et al., 2011; Gnanadesikan et al., 2011; King et al., 2011).
Changes in temperature, nutrient supply, mixing, light availability,
pH, oxygen, and salinity are expected to affect the ecological func-
tions and, consequently, the sustainable harvests available from
the ocean’s biological communities (Cochrane et al., 2009;
Brander, 2010; Denman et al., 2011; Doney et al., 2012). Exposure
of marine organisms to ocean acidification and oxygen depletion
will vary regionally, and other anthropogenic impacts (e. g., eu-
trophication) may also contribute. The vulnerability of species to
these changes varies considerably (Whitney et al., 2007; Feely
et al., 2008; Vaquer-Sunyer and Duarte, 2008; Levin et al., 2009;
Ries et al., 2009; Rabalais et al., 2010).

Regional differences in primary production are also antici-
pated. In mid-latitudes the mixed layer depth (MLD) is projected
to shoal, which could decrease nutrient supply and ultimately
primary production. For example, an intercomparison study of
11 models projected that the ocean’s MLD will change (decrease
or shoal) in most regions of the North Pacific during the 21st
century as the result of increased stratification resulting from
warming and/or freshening of the ocean surface and changes
in the winds (Jang et al., 2011). A study using four Earth
System Models (ESMs) found a similar pattern in the North
Atlantic (Steinacher et al., 2010). Capotondi et al. (2012) also
provide a global treatment of stratification changes. Primary pro-
duction in mid-latitudes is expected to be reduced by this MLD
shoaling through decreased nutrient supply (Hashioka and
Yamanaka, 2007; Barange and Perry, 2009). However, production
may increase in higher latitudes especially in seasonally ice-
covered areas through increased light levels and a longer period
of production and changes in the ice-edge bloom (Perrette
et al., 2011). Increased stratification caused by sea surface fresh-
ening and/or warming is also a main driver of ocean deoxygen-
ation through decreased ventilation (Whitney et al., 2007).
Rykaczewski and Dunne (2010) hypothesized that decreased ven-
tilation in upwelling zones may increase production due to
increased residence times (the period where producers are
retained in the high production zone) and nutrient remineraliza-
tion; however, we note that these benefits could be offset by
reduced nutrient supply. There remain important questions
regarding how physical and biological processes are incorporated
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into projection models (e.g. temperature response; Taucher and
Oschlies, 2011) and how these models represent coastal and
shelf sea areas (e.g. Holt et al., 2012).

The responses of secondary production to climate change are
not clear, partially because the data available for zooplankton
are more limited and the mechanisms linking secondary
production to ocean conditions are complex. In the North
Atlantic, the total abundance of zooplankton changed with
sea surface temperature (SST) change (Richardson and
Schoeman, 2004). However, this overall pattern masks

important trends in the zooplankton community where the
abundance of both herbivorous and carnivorous copepods
increased with phytoplankton abundance but the abundance
of neither group was directly correlated with SST. Several
authors have recognized that the phenology of zooplankton
may also be affected by a changing climate in both the
Atlantic and Pacific (Chiba et al., 2004; Edwards and
Richardson, 2004; Mackas et al., 2007). Although climate
change results in an earlier onset of production cycles, the
actual timing and changes in the magnitude of production

Figure 1. Overview of species and geographic location of investigations presented at the 2010 ICES/PICES/FAO symposium in Sendai, Japan
(session A2) and the 2012 ICES/PICES/IOC symposium in Yeosu, Korea (session S4) (also see special volume Hollowed et al., 2011).
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varied in direction and was influenced by different mechanisms
among regions (Richardson, 2008). Our limited understanding
of the trophodynamic linkages between phytoplankton and
zooplankton adds considerable uncertainty to projections of
the responses of these groups to global change (Ito et al., 2010).

Impacts on marine fish and shellfish
Climate-driven changes in the environment may affect the physi-
ology, phenology, and behaviour of marine fish and shellfish at
any life-history stage, and any of these effects may drive population-
level changes in distribution and abundance (Loeng and Drinkwater,
2007; Drinkwater et al., 2010; Jørgensen et al., 2012). Fish and shellfish
will be exposed to a complex mix of changing abiotic (e.g. tempera-
ture, salinity, MLD, oxygen, acidification) and biotic (shifting distri-
bution, species composition, and abundance of predators and prey)
conditions making it difficult to predict the responses.

Many climate-related changes have already been observed
(Table 1; Perry et al., 2005; Mueter and Litzow, 2008; Barange and
Perry, 2009; Nye et al., 2009). Kingsolver (2009) identified three
types of potential responses of species to climate change: distribu-
tion changes in space and time, productivity changes, and adapta-
tion. The extent of population-level changes may be mediated by
the capacity for individual species/populations to adapt to
changes in important abiotic and biotic factors through changes
in the phenology of important life-history events (e.g. migration,
spawning), or through changes in organismal physiology (e.g.
thermal reaction norms of key traits such as growth; Pörtner,
2010) and/or through acclimation (Donelson et al., 2011).
Mismatches may occur when shifts in the environment lack consist-
ent patterns or out-pace the species ability to adapt or acclimate to
change (Burrows et al., 2011; Duarte et al., 2012).

Changes in life cycle dynamics will occur in concert with
climate-induced expansion, contraction, and/or shifts in the
quality and quantity of suitable habitat, and different life stages
may be affected differently by changes in habitat characteristics
(Petitgas et al., 2013). Moreover, in some regions, changes in tem-
perature will be accompanied by changes in other abiotic factors.
For example, expected regional changes in precipitation could
lead to decreases or increases in local salinities which will have
major impacts on distributions and productivities of fish species
in coastal and estuarine areas. Thus, perhaps future thermal condi-
tions may be suitable for new immigrant species, but shifts in sali-
nities could make these waters uninhabitable, illustrating the
challenges of projecting future trends in species richness of fish com-
munities.

Table 1 summarizes recent literature on observed and expected
shifts in spatial distributions of marine fish and shellfish.
Although there are many accounts of temperate species moving to
higher latitudes, presumably in response to warming (Table 1; e.g.
Beare et al., 2004; Perry et al., 2005), there is less evidence of contrac-
tion of ranges of boreal species (Genner et al., 2004; Rijnsdorp et al.,
2010). The distributional changes may be the result of either active
migration of living marine resources to higher latitudes or from
differential productivity of local populations in lower and higher
latitudes (Petitgas et al., 2012), and usually the causal factors are
poorly documented. The sensitivity of fish and shellfish stocks to
climate change may differ depending on whether the stock is at
the leading, trailing or center of the species range (Beaugrand and
Kirby, 2010). In some cases, latitudinal shifts will exacerbate mis-
matches due to concurrent changes in the light cycle and the
duration of the growing season (Kristiansen et al., 2011; Shoji
et al., 2011).

Figure 2. Conceptual pathways of direct and indirect effects of climate change and other anthropogenic factors on marine ecosystems, with their
implications to adaptation and management. Solid arrows, consequences of climate change; dotted arrows, feedback routes.
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The aforementioned impact of climate change on MLD and
ocean chemistry has been shown to exacerbate vertical habitat com-
pression for some highly migratory species of billfish and tunas in
the tropical Northeast Atlantic Ocean. Initial work demonstrated
how the near-surface density of many high-oxygen demand
species of pelagic fish was much higher in the eastern than in the
western tropical Atlantic (Prince et al., 2010). Eastern boundary
current conditions off the west coast of Africa create an oxygen
minimum zone that is much closer to the surface than in the
western tropical Atlantic. The habitat compression has led to
higher vulnerabilities to surface fishing gear and artificially high
indications of abundance. Stramma et al. (2011) reported that a de-
crease in the upper ocean layer dissolved oxygen occurred in the

tropical Northeast Atlantic. This change equated to an annual
habitat loss of �15% over the period 1960–2010. Climate change
is expected to further expand the Atlantic oxygen minimum zone
due to increased ocean temperatures and decreased oxygen levels,
potentially threatening the sustainability of the pelagic fisheries
and their associated ecosystems.

Climate change may also influence recruitment success, which
will impact population productivity (e.g. Hare et al., 2010;
Mueter et al., 2011). The resilience to shifts in production
may vary by region. In many regions, fish and shellfish have
evolved within systems impacted by intermittent (1 – 2 years) or
longer term events that occur on decadal or multidecadal time-
scales (Baumgartner et al., 1992; Hare and Mantua, 2000;

Table 1. Recent studies of climate impacts on spatial distribution of marine fish and shellfish.

Reference
Publication
year Region LME Type # Species

Cheung et al. 2009 Global NA Retrospective and
Projection

Hollowed et al. In press b Arctic/Subarctic Barents Sea, Bering Sea, Arctic Vulnerability 17
Huse and

Ellingsen
2008 Arctic/Subarctic Barents Sea Retrospective and

Projection
1

Ciannelli and
Bailey

2005 Subarctic E. Bering Sea Retrospective 1

Mueter and
Litzow

2008 Subarctic E. Bering Sea Retrospective 46

Spencer 2008 Subarctic E. Bering Sea Retrospective 5
Sundby and

Nakken
2008 Subarctic Norwegian Sea Retrospective 1

Drinkwater 2005 Subarctic North Atlantic Projection 1
Drinkwater 2006 Subarctic Northern North Atlantic Retrospective 24
Dulvy et al. 2008 Subarctic North Sea Retrospective 29
Engelhard et al. 2011 Subarctic North Sea 1913–2007 2
Petitgas et al. 2012 Subarctic North Sea Retrospective 1
Perry et al. 2005 Subarctic North Sea 1977–2001 36
Welch et al. 2001 Subarctic North Pacific Ocean Retrospective and

Projection
1

Tseng et al. 2011 Subarctic Oyashio Current Retrospective and
Projection

1

Fogarty et al. 2008 Temperate NE US Continental Shelf Retrospective and
Projection

1

Hare et al. 2012a Temperate NE US Continental Shelf Projection 1
Nye et al. 2009 Temperate NE US Continental Shelf Retrospective 36
Hare et al. 2010 Temperate NE US Continental Shelf Retrospective and

projection
1

Last et al. 2011 Temperate Australian Shelf Retrospective 45
Ito et al. 2010 Subarctic /

Subtropical
Kuroshio/Oyashio current, Kuroshio

Extension
Projection 1

Okunishi et al. 2012 Subarctic /
Subtropical

Kuroshio/Oyashio current, Kuroshio
Extension

Projection 1

Yatsu et al. 2013 Subtropical /
Subtropical

Kuroshio/Oyashio current, Kuroshio
Extension

Vulnerability 4

Hare et al. 2012b Subtropical SE US Continental Shelf Projection 1
Agostini et al. 2008 Subtropical California Current Retrospective 1
King et al. 2011 Subtropical California Current Vulnerability 8
Hsieh et al. 2009 Subtropical California Current Retrospective 34
Stewart et al. 2012 Subtropical California Current Retrospective 1
Muhling et al. 2011 Tropical Gulf of Mexico Retrospective and

Projection
1

Su et al. 2011 Tropical Pacific Ocean Retrospective and
Projection

1

Lehodey et al. 2012 Tropical Pacific Ocean Retrospective and
Projection

1

Projected impacts of climate change on marine fish and fisheries 1027
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Greene and Pershing, 2007; Di Lorenzo et al., 2008; Hatun et al.,
2009; Overland et al., 2010; Alheit et al., 2012). These events will
probably continue to occur in the future. It is unclear whether
species and communities that have experienced such variability
in the past will be better adapted to future climate change. In
some well-documented cases, climate variability is thought to
provide opportunities for dominance switching and ecosystem
reorganization (Skud, 1982; Southward et al., 1988; Anderson
and Piatt, 1999; Rice, 2001; Stenseth et al., 2002; Chavez et al.,
2003). Climate change may interrupt or accelerate these cycles
of dominance switching with unknown implications for both
dominant and subordinate species within each phase of a cycle.

The responses of individual marine species to climate change will
vary by species and region resulting in a broad spectrum of potential
shifts in geographic ranges, vertical distributions, phenologies, re-
cruitment, growth, and survival. Thus, alterations in both the struc-
ture (i.e. assembly and connectivity) and function (i.e. productivity)
of biological communities are expected (Figure 2). Community
responses are the most uncertain types of ecosystem responses to
climate change because they involve more players (all the species in
the community and the habitats that are used), their interactions,
and direct as well as indirect effects of climate drivers (Stock et al.,
2011), as well as the spatial and temporal complexity of responses
(Burrows et al., 2011; Gnanadesikan et al., 2011). However, there is
some evidence that community assemblages tend to move in
concert based on retrospective studies of species spatial patterns and
species richness (Hofstede et al., 2010; Lucey and Nye, 2010).

Impacts on fishers, fisheries, and fishery-dependent
communities
Fisheries and fishery-dependent communities have been subjected
to fluctuations in fish stocks, extreme weather events, and natural
changes in climate and sea-level throughout history. Coastal liveli-
hoods have depended on the capacity to cope with such changes
through the alteration of fishing practices or switching to alternative
livelihoods (Allison et al., 2009; Perry et al., 2011). The capacity for
human communities to respond to changes in the species compos-
ition, abundance, and availability of marine resources vary region-
ally (Daw et al., 2009). Climate change effects on fish and fisheries
will occur within the context of existing and future human activities
and pressures, as well as the combined effects of multiple stressors
and natural agents of change acting directly and through feedback
pathways (Figure 2; Ruckelshaus et al., 2013). In coastal ecosystems,
pollution, eutrophication, species invasions, shoreline develop-
ment, and fishing generally play more important roles as drivers
of change than on the high seas.

It will be difficult to tease out the additional effect of climate
change from other anthropogenic activities (such as fishing;
Rogers et al., 2011). In some cases, where time-series are long
enough or can be re-constructed, the relative importance of differ-
ent forcings can be quantified (e.g. Eero et al., 2011). Hare et al.
(2010) examined the combined effects of fishing and climate in a
modelling context and found that fishing likely remains the domin-
ant pressure, especially at the historically high fishing levels. Other
researchers found that it was difficult to separate the influence of an-
thropogenic climate change from decadal environmental variability
and fishing even with a century of data (Engelhard et al., 2011;
Hofstede and Rijnsdorp, 2011), whereas others note that fisheries
can amplify or moderate climate signals (Ottersen et al., 2006).
Some promising alternative approaches to address these issues

include: comparative studies, experiments, and opportunistic
studies of major natural or anthropogenic events (Megrey et al.,
2009; Murawski et al., 2010). Ainsworth et al. (2011) used five
Ecopath with Ecosim models to simulate changes in primary pro-
duction, species range shifts, zooplankton community size structure
in response to ocean acidification, and/or ocean deoxygenation.
Fishing pressure was also included as an additional perturbation
to the modelled foodweb. Their study revealed that responses to
the cumulative effects of climate change and fishing may result in
different patterns than would have been predicted based on individ-
ual climate effects, indicating possible interactions.

The degree to which fisheries are managed sustainably varies glo-
bally (Worm and Branch, 2012). In many regions, efforts are under-
way to prevent overfishing, rebuild overfished stocks, and
implement an ecosystem approach to management (Murawski,
2007). In the future, the detrimental effects of climate change on
fish stocks may, to some extent, be buffered in stocks that have a
large and productive spawning-stock biomass, a less truncated age
structure, and sustainable exploitation rates (Costello et al., 2012).
For example, cod have remained abundant with wide size/age struc-
ture in some areas (i.e. Øresund) where exploitation has been low,
although temperatures have increased and while abundance has
declined and age structure has narrowed in neighbouring areas
(North Sea, Baltic Sea; Lindegren et al., 2010).

Natural scientists and economists are partnering to develop the
projections of how fishers may respond to changes in fish distribu-
tion and abundance (Haynie and Pfeiffer, 2012). It is unclear how
complex management systems involving measures such as catch
shares, bycatch limits, mixed species catch or effort limits, and
spatial or temporal closures will perform as the species composition,
distribution, and abundance of fish species change (Criddle, 2012).
An equally challenging issue is predicting how different nations will
utilize the broad range of ecosystem services that marine ecosystems
provide (Halpern et al., 2012). Multispecies management strategy
evaluations can be used to evaluate the expected performance of
management frameworks with respect to balancing these complex
issues (Plagányi et al., 2011). However, selecting the functional
form of responses necessary to predict how fishers will respond to
changes in marine resources will continue to be challenging.

The fish stocks, fisheries, and marine ecosystems that coastal
communities depend on can be described as components of
coupled marine social-ecological systems (Perry et al., 2011). This
is a particularly useful representation when considering the policy
goals of preserving the health of the marine ecosystem while main-
taining the supply of desirable goods and services that support
human livelihoods. The representation requires specifying the
scale of the system, its properties (e.g. resilience, biodiversity, prod-
uctivity, social capital), how it is, or can be, governed, and what
structures and information are required for such governance.
Management and governance approaches may need to be adapted
to the available scientific and management capacity (including fi-
nancial and social resources). While strengthening capacity may
put extra demands on management agencies and stakeholders, it
also brings with it greater sustainable benefits through reduced un-
certainty (Cochrane et al., 2009, 2011). Anthropogenic climate
change is an increasingly influential driver of change in such
social-ecological systems, added to an already complex set of
natural and anthropogenic drivers. The impacts of climate drivers
are manifested on time-scales that are generally longer than most
other anthropogenic drivers to which these social-ecological
systems routinely respond.
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There is growing recognition of the need for much stronger inte-
gration of social and ecological sciences in developing adaptation
options for industries and coastal communities (Allison et al.,
2009; Daw et al., 2009; Miller et al., 2010; Gutierrez et al., 2011).
In this context, there may be much to learn from the dynamics of
small-scale fisheries in coastal communities. Institutions such as
the FAO and Worldfish are active in working on climate change
adaptation in such systems. Adaptation and mitigation depend on
actions and behavioural choices by the communities who are
exploiting the marine resources (whether for fisheries, tourism, or
other goods and services), as well as a supportive wider governance
environment to address threats and constraints to adaptation and
mitigation that are outside the control of local communities.
Resource users and communities, within the context of an inte-
grated ecosystem approach, must have the capacity and the will to
adapt and mitigate. Viable adaptation and mitigation actions
require the identification of vulnerabilities at levels from the house-
hold to macroeconomic ability to diversify livelihoods for income
and the availability of environmentally sustainable livelihoods and
development options. For example, “co-benefits” of both adapta-
tion and mitigation can arise from biodiversity conservation, and
protection and restoration of mangroves, and other coastal vegeta-
tion (Ruckelshaus et al., 2013). Coastal resources governance can be
encouraged to develop community-based disaster risk management
and to integrate climate change issues into the local and national
socio-economic development planning. These actions may help to
prepare communities for climate change impacts on livelihoods
that depend on marine resources.

Implications for future security of the food supply
The expansion of the world’s human population and current levels
of hunger in many parts of the world have raised concerns over the
security of the food supply in the future (OECD, 2008; Godfray et al.,
2010, 2011). Fish currently provide essential nutrition to 4 billion
people and at least 50% of the animal protein consumed by 400
million people (Laurenti, 2007; FAO, 2012), currently contributing
�17 kg of fish per capita and year. Most of the expected increase in
the human population to 2050 occurs in regions where fish provide
most of the non-grain dietary protein (UN-DESA, 2009; UN-WHO,
2002). The extent to which marine fisheries will be able to provide
fish for the world’s population in the future will depend on climate-
driven changes to the productivity of the world’s oceans and the per-
formance of fisheries management systems (Bell et al., 2009; Worm
et al., 2009; Costello et al., 2012). Several scientists have used outputs
from IPCC global climate models to explore quantitatively or quali-
tatively the potential consequences of climate change on fish and
fisheries production and the implications in terms of food security
targets (e.g. Merino et al., 2012). These studies concluded that even
with improved management, there is only a modest scope for
increases in sustainable global yields for capture fisheries (Rice
and Garcia, 2011; Brander, 2012). However, innovation in both
large-scale and small-scale aquaculture may support a continued in-
crease in production from marine and freshwater systems (FAO,
2008a, b; OECD, 2008; Garcia and Rosenberg, 2009; Rice and
Garcia, 2011; Merino et al., 2012). At present, global aquaculture
production is very unevenly distributed with Asia accounting for
89% of world production (FAO, 2012). In addition, the effects of
climate change on prospects for fisheries and aquaculture show
strong regional differences (Merino et al., 2012). Substantial polit-
ical and financial investment in aquaculture will be required in suit-
able climatic and environmental regions if it is to provide greater

contributions to food security and meet the growing demand for
fish and seafood products. Growing international trade in fish pro-
ducts and fishing fleet capacities is accentuating regional differences
in potential fish consumption (OECD-FAO, 2009; Kim, 2010).
Hence, in addition to direct impacts of climate change on fish popu-
lations and communities, and thus food production, there can be in-
direct impacts through changes to the availability of alternative
sources of protein, to the conditions suitable for intensive culture
of fish and shellfish, and even to the complex interactions of
climate on the global trade in food.

Uncertainty and skill assessment
Almost all attempts to forecast the impacts of climate change on fish
and fisheries involve models of one form or another, and all these
models will include uncertainties in both model structure and par-
ameter values. A range of model types is used in fisheries research,
from simple empirical relationships through population dynamics
models to detailed system models (Hollowed et al., in press a).
Consideration of the diverse and complex interactions that occur
between the underlying drivers of climate change and their ultimate
impacts on fish and fisheries tends to require the use of relatively
complex models in an effort to achieve scientific realism. However
there are trade-offs since increasing model complexity to achieve
greater realism can reveal additional uncertainty associated with in-
complete knowledge of both the functional form and parameteriza-
tion of the model (FAO, 2008a, b; FAO, 2009).

There are many such uncertainties in assessing impacts of climate
change on marine ecosystems. For example, physical–biological
pathways are elucidated for only a few species or functional
groups. Our empirical knowledge may also not apply beyond previ-
ously observed ranges of environmental factors, or outside of histor-
ical rates and amplitudes of environmental change. Adaptation of a
species to new environmental conditions is one of the most difficult
issues to evaluate, especially when attempting to project connectiv-
ity among ecosystem components (Planque et al., 2011).
Furthermore, projecting climate change effects on fish and fisheries
is challenging due to the cumulative effects of climate change, other
anthropogenic activities, and feedback mechanisms (Fulton, 2011).

When physical–biological pathways are known, analysts must
consider what long-range forecast and a modelling method
should be used to project future states of nature. Long-term quan-
titative forecasts of climate change effects are generally based on
outputs from one or more global circulation models (GCMs) pro-
viding boundary conditions for species or ecosystem predictive
models. Inferences about biological responses to climate change
based on GCM outputs commonly deal with uncertainty in the
emission scenario forcing the GCMs (Hawkins and Sutton, 2009),
structural uncertainty in the GCMs, internal variability, and the
generally coarse resolution of the GCM, as well as uncertainty in
modelling the biological responses. The relative importance of dif-
ferent sources of uncertainty associated with GCM predictions
depend on the temporal and spatial scales of interest. Although
these have not been quantified in coupled atmosphere-ocean
GCMs, climate model predictions on both global and regional
spatial scales have been shown to be dominated by internal variabil-
ity in the climate over short time-scales (5–15 years), by model un-
certainty on intermediate scales (15–40 years), and by scenario
uncertainty on longer time-scales (Hawkins and Sutton, 2009).
Although sensitive to emissions scenarios, there is broad agreement
among climate models for some parameters such as temperature,
even at short time-scales and on regional spatial scales (Deser
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et al., 2012). Similarly, GCMs provide credible projections for re-
gional ocean temperatures (Wang et al., 2012). In contrast,
derived quantities computed from the GCM output (e.g. MLD)
can vary widely among models if they are based on parameters
that are poorly estimated by GCMs (Jang et al., 2011). Moreover,
there is generally a mismatch in spatial scales between the output
of the GCMs, which tend to have skill at an ocean-basin scale, and
the need for resolution of finer scale ocean processes on the
coastal shelves needed to project impacts on fish and fisheries
(Stock et al., 2011; MacKenzie et al., 2012; Meier et al., 2012).
Although there is a clear need to capture regional-scale processes,
there is no guarantee that high-resolution regional models will
provide improved predictions of regional climate changes com-
pared with GCMs (Racherla et al., 2012). Therefore, it is important
that scientists investigating fish responses to climate change correct-
ly understand the robustness and uncertainty of GCM-derived vari-
ables when they use these variables to predict biological responses.

In addition to uncertainty in GCM outputs, many sources of un-
certainty exist in models of biological responses (Planque et al.,
2011) and these should be accounted for when making projections
(Hare et al., 2012b). Various approaches have been used to quantify
the uncertainty associated with the projections of the potential
impacts of changing ocean conditions on marine fish and shellfish
(e.g. Loukos et al., 2003; Cheung et al., 2009, 2010; Lindegren
et al., 2010; Fulton, 2011; Blanchard et al., 2012). These include bio-
climate envelope models to determine expected shifts in species
distributions as a result of changes in the availability of preferred
temperatures (Cheung et al., 2009, 2011; Jones et al., 2012), fish
population models and end-to-end ecosystem models coupled to
regionally downscaled climate-physical oceanographic models
(e.g., MacKenzie et al., 2012; Meier et al., 2012). Methods used to
address uncertainty include, but are not limited to, the following:

(i) Hierarchical models: these models, using a fully Bayesian or a
empirical Bayes approach, provide a powerful tool for quanti-
fying uncertainty in the estimated responses of fish popula-
tions to climate variability across multiple stocks, regions, or
other “replicate” units (e.g. Mueter et al., 2002; Helser et al.,
2012). Because of the computational demands, such models
are only beginning to be applied to coupled biophysical
models (e.g. Fiechter et al., 2009).

(ii) Multiclimate model scenarios: the most basic approach to
characterizing, if not quantifying, uncertainty about potential
future responses to climate change consists of presenting
results and implications from the analysis of different
models and comparing and contrasting the resulting patterns
across models (A’mar et al., 2009; Hare et al., 2010).

(iii) Ensemble modelling: this approach is commonly used to char-
acterize uncertainty in climate projections across multiple
models (Hollowed et al., 2009; Wang and Overland, 2009)
and has recently also been used in coupled models to
examine uncertainty in both climate trajectories and in the
biological responses (Ito et al., 2013; Mueter et al., 2011).
This approach is used when analysts find that some of the dif-
ferent oceanographic models may perform better than others
to reproduce the physical or biological oceanographic vari-
ables (e. g., temperature, plankton production) that influence
the fish population dynamics (MacKenzie et al., 2012).
Biological models in these ensemble approaches may be
driven by dynamically (e.g. Ito et al., 2013) or statistically

downscaled climate scenarios (Meier et al., 2012; MacKenzie
et al., 2012). An outstanding issue in ensemble modelling is
the criteria to decide which models should be included in
the ensemble and/or how they should be weighted.
Overland and Wang (2007) reduced a set of 22 GCMs to 10
based on how well they simulated the variability of 20th
century North Pacific SSTs. Depending on which particular
variables are of interest, other selection criteria could of
course be devised. Additionally, good model performance
evaluated based on historical or present climate does not ne-
cessarily imply certainty in predictions of future climate.
However, Reichler and Kim (2008) note that the retrospective
assessment of the skill of simulations relative to observations is
an important way to evaluate confidence in projections.

(iv) Monte-Carlo approaches: whether or not the impacts of mul-
tiple models are investigated, a simulation (Monte Carlo) ap-
proach can generally be used to quantify uncertainty when
making projections. Simulations can account for known un-
certainty in future climate (random draws of climate trajector-
ies based on different emission scenarios), in population
dynamics (random draws of important population para-
meters from multiple univariate or, better, a single multivari-
ate distribution), and in environment–biology relationships
(random draws of parameter values for estimated or
assumed functional relationships from a suitable probability
distribution or from historical values; Mueter et al., 2011;
Planque et al., 2011). A simulation approach is also utilized
in the context of Management Strategy Evaluations, which
allows the robustness of management strategies to be tested
in the face of system uncertainty, but at the expense of consid-
erable time and processing power (Ianelli et al., 2011). The re-
liability of such simulations depends on specifying both the
functional forms and the sampling distribution of the para-
meters correctly, which in some data-limited situations can
be more difficult than merely estimating the central moment
of the distribution correctly and using other means to incorp-
orate uncertainties in the final result (Rochet and Rice, 2009).

(v) Parameter sensitivity: estimating the sensitivity of model
outputs to changes in values of parameters is the primary
means for identifying particularly influential parameters
(Maunder et al., 2006; Haltuch et al., 2009; Peck and
Hufnagl, 2012). If models are particularly sensitive to a given
parameter, uncertainty about the true parameter value is an
important source of overall uncertainty. Sensitivity analyses
are typically used to prioritize field and laboratory studies
(e.g. Peck and Hufnagl, 2012), but they can also be used to
quantify uncertainty in projections by repeatedly running
models across different values of the important parameters
to bracket possible responses. However, this requires some
knowledge of the likely distribution of parameter values and
it can be challenging with complex models that have multiple,
important parameters that require a large number of model
runs. Gibson and Spitz (2011) and Fiechter (2012) provide
examples of exploring the effects of parameter uncertainty in
a nutrient–phytoplankton–zooplankton–detritus (NPZD)
model on estimates of phytoplankton biomass in the eastern
Bering Sea and Gulf of Alaska, respectively.

Each modelling approach has strengths and weaknesses and, as for
the physical realm, multimodel projections may provide additional
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insights into the range of impacts to fish and fisheries that could
occur under future climate change (Plagányi et al., 2011; Stock
et al., 2011; Link et al., 2012; Hollowed et al., in press a). A parallel
alternative is the development of models that combine principles
and algorithms from several modelling frameworks, such as the in-
clusion of size-based ecological constraints embedded in bioclimate
envelope models (Fernandes et al., in press). This approach helps
assess the relative strengths of each model and makes predictions
more realistic and robust to assumptions.

Uncertainty in fish population simulations may be more fully
characterized by using a suite of models representing different com-
ponents of the climate–ocean–ecosystem complex. Compounding
the uncertainty of projected fish responses is the availability of mul-
tiple representations of the fish population dynamics (e.g. single-
species model, predator–prey interactions model, foodweb
models, etc.) which can be coupled to the outputs from the available
physical oceanographic models. Consequently, the availability of
different climate-physical oceanographic and ecological models
for a given system presents an opportunity to investigate a wide
range of climate-oceanographic and biological model assumptions
and parameterisations (e.g. via sensitivity analysis), particularly by
combining the different climate-oceanographic and population
models (MacKenzie et al., 2012; Meier et al., 2012). This approach
can identify both the range and similarity of possible biological
responses to different model frameworks and identify critical gaps
in knowledge and new hypotheses for investigation.

Recommendations
Our synthesis elucidated several research foci that will be needed to
improve the projections of climate impacts on fish and fisheries.
The scale and ecological importance of climate change research
for the marine community will require coordination at the local,
national, and international level. In many nations, research pro-
grammes are emerging that will address the data gaps and research
identified below. International marine research organizations are
facilitating coordination and integration of national research at
the hemispheric or global level. A key element of the success of
these local, national, and international research collaborations
will be the formation of interdisciplinary research teams that
include earth system modellers, ecologists, fisheries scientists,
and fisheries managers who will work together to develop new
and improved projection capabilities for the future. We identify
the following key research needs.

Increased physiological measurements
Physiological measurements of key life stages of all target marine fish
species are needed. Studies should examine the effects of multiple
factors on growth and bioenergetics (rates of energy losses and
gains). There is an urgent need to explore interactive effects
(temperature × pH × O2) on the survival and growth performance
in a variety of fish and invertebrates and to gain more data on the
growth physiology of all life stages. This will not only help in the
short term for linking physiological responses to statistically down-
scaled drivers but also in the long-term to build physiologically-
based models (Pörtner and Peck, 2010; Jørgensen et al., 2012) that
can make use of dynamically downscaled forcing variables. Longer
term experiments are also needed (Denman et al., 2011) to gauge
the adaptive capacity of individuals and populations and test how
the sensitivity to climate-driven factors may change from one gen-
eration to the next. Operational techniques to incorporate physi-
ology directly into stock projection type models should be explored.

Integrated ecological monitoring to identify mechanisms
underlying fish and shellfish responses to environmental
drivers and fishing
Systematic ocean sampling of interacting physical, chemical, and
biological components must be continued to improve our under-
standing of the key climate-driven processes underlying observed
trends. The marine environment is chronically undersampled,
and we have limited historical time-series to gauge the past and
recent magnitude of natural variability (abundance, distribution)
of marine fish and shellfish resources relative to more recent
responses to multiple, anthropogenic stressors (climate, eutrophi-
cation, pollution, etc.). Efforts to establish a global network of
observations (e.g. distribution, growth) are particularly useful for
tracking climate change impacts on spatial distributions and abun-
dance. In addition, continued efforts to understand critical biomass
thresholds will be needed. Knowledge of the responses of key prey
fields (zooplankton and forage fish) to changes in ocean conditions
will be needed to adequately project shifts in the distribution and
abundance of exploited fish and shellfish stocks. Efforts to identify
cost-effective ways of augmenting existing fish and shellfish
surveys to collect information on these prey fields is needed to fill
existing gaps in knowledge for these species (e.g. Handegard et al.,
2012; Ressler et al., 2012). Maintenance and enhancement of fish
and shellfish consumption is also needed to adequately project
responses to shifting prey density and species composition.
Trophodynamic monitoring (e.g. combination of stomach contents
and isotope ratio) is also required to detect match–mismatch
changes with climate change in future.

Short-term forecasts (1–10 years) based on observed
ocean conditions
Short-term projections of biological responses using observed
ocean conditions are a powerful way to assess the predictive skill
of functional relationships. For physical models, these short-term
projections will allow analysts to test the models ability to capture
the correct physics. For harvested fish and shellfish stocks, this
may be part of routine stock assessments. Over time, results from
these skill assessments will provide the estimates of process error
for long-term projections.

Process studies to test functional relationships
Survival and growth efficiency of early life stages of marine fish and
invertebrates mostly ensures a formation of year-class productivity.
Despite a century of research, many key functional relationships
remain uncertain and they do not appear to be static. Studies of
bioenergetic responses to climate change and their effect on larval
and juvenile development (especially with respect to ocean acidifi-
cation), growth and reproduction are needed. Process studies of
species interactions including predator-prey responses to climate
change are also needed. Studies to identify the factors influencing
the distribution of juveniles would provide valuable information
for modelers.

Comparative studies to test hypotheses
Continued emphasis should be placed on identifying (and/or com-
paring) the drivers of recruitment variability between and within
species. Comparative analyses among stocks can reveal broad,
climate-related patterns in productivity (e.g. Dutil and Brander,
2003; Shuntov and Temnykh, 2011) that would otherwise be
elusive. Furthermore, continued process-oriented investigations
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are necessary to reveal how various abiotic (temperature, salinity,
pH) and biotic (trophodynamic) factors interact with fishing
pressure to make populations most susceptible to climate-driven
changes. In terms of understanding recruitment, “non-stationarity”
is an important point to consider in understanding historical and
current recruitment drivers (Haltuch et al., 2009). Such information
should help identify how various factors contribute to changes in the
productivity and distribution of marine fish observed in the last two
to three decades (e.g. Rose, 2005; Rijnsdorp et al., 2010) and to make
more robust projections of future changes.

Improvement of ESMs and/or regional coupled biophysical
models
The horizontal resolution of some GCMs is too coarse to capture
shelf-region ocean processes. The spatial scales are not adequate
to resolve many of the important mesoscale structures such as
eddies, fronts, tides, and wind-driven upwelling that are important
for biological processes. This will require downscaling from GCMs
to more spatially resolved regional models. Although such regional
models are being developed, it is important that there be coupling
(one-way or two-way) between the regional and global models to
capture the correct physics.

Coupled biophysical projection models should be extended to
include the responses of fish and shellfish, fishers, and managers
to climate-driven change (Stock et al., 2011). New classes of
models that explore the synergy between climate change effects
and human activities are needed to provide meaningful and realistic
projections and to allow adaptation and mitigation measures and
their trade-offs, and to emerge from evolving management
systems (Barange et al., 2010).

Vulnerability assessments for fish, fisheries,
and fishery-dependent communities
Allison et al. (2009) provided an important preliminary estimate of
the vulnerability of countries to climate change impacts on fisheries.
The authors concluded that for countries depending on fisheries but
without sufficient capacity to adapt, climate-related changes in fish-
eries are likely to result in either greater economic hardships or to
those countries missing opportunities for maintaining or improv-
ing the benefits obtained from their fisheries. Further research is
required to increase the resolution of the results from the Allison
et al. (2009) study and to explore the opportunities and constraints
to adaptation in the most vulnerable countries in greater detail to
allow for targeted efforts to build adaptive capacity where it is
most needed and will yield the greatest benefits.

Coping strategies
As presented in this paper and in references included here, there is
considerable general information available on what adaptive strat-
egies are likely to be effective in response to climate-induced
changes in fisheries and aquaculture. However, to date, there are
very few examples of successful, or not so successful, implementa-
tion of adaptation strategies or plans in practice. There is an
urgent need to select cases, of diverse social and ecological character-
istics, where climate change is already having an impact on fisheries
and aquaculture social-ecological systems and to develop, imple-
ment, and monitor adaptation plans in accordance with current
best practices and understanding. This will allow the existing theor-
ies to be tested and improved where required from the lessons
learned. Issues of food security and marine conservation may

require new approaches to satisfy the growing demand for marine
resources.

ICES – PICES strategic initiative
To coordinate and encourage research to address the some of the re-
search needs outlined in the previous section, the governing bodies
of both PICES and ICES approved the formation of the first joint
ICES–PICES Strategic Initiative on Climate Change effects on
Marine Ecosystems (SICCME). The key deliverables for ICES and
PICES are the development of sufficient knowledge and under-
standing to successfully predict the future implications of climate
change on marine ecosystems and the ability to use this information
to develop strategies for managing living marine resources under a
changing climate. The SICCME is designed to facilitate and acceler-
ate the acquisition of new knowledge and to ensure that new knowl-
edge is communicated and published on a schedule that would allow
it to be useful to, and considered by, international scientific organi-
zations responsible for providing advice on climate change such as
the IPCC and the United Nations.

Members of the SICCME will focus their work on four critical
issues:

(i) identifying techniques for predicting climate change impacts
in systems impacted by decadal variability,

(ii) defining the vulnerability of commercial species to climate
change and identifying which species would be most likely to
experience shifts in spatial distributions,

(iii) engaging the global earth system modelling community in
modelling climate change effects on marine ecosystems and
identifying opportunities for collaborations, and

(iv) building response scenarios for how the human community
will respond to climate changes as an extension (added dimen-
sion) of RCP scenarios described by van Vuuren et al. (2011).

The eight key research issues identified in this paper map into the
four SICCME critical issues as follows:

(i) SICCME Critical Issue a: research recommendations 2, 3, and 5

(ii) SICCME Critical Issue b: recommendations 1, 2, 3, 4, and 7

(iii) SICCME Critical Issue c: recommendation 6

(iv) SICCME Critical Issue d: recommendations 7 and 8

This suggests that the leading marine science organizations in the
northern hemisphere are well poised to facilitate advancements in
our ability to understand and project the effects of climate change
on marine ecosystems in the future. Their track record, to date, sug-
gests that partnerships between science organizations will lead to
more rapid global dissemination of research findings and analytical
approaches through workshops, symposiums, and publications.
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