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Executive Summary 
 

This report introduces a high level climate risk analysis methodology for urban areas that provides a 

top-down, and broad, view of climate risks to cities across Europe. The approach takes advantage of 

increasingly availability of European and global dataset and computing power to apply the method to 

571 cities in the EU’s Urban Audit database.  

This high level cities risk analysis involved: 

 Identification of stakeholder priorities for city-scale climate risk and vulnerability assessment; 

 Development of a framework for city-scale climate risk analysis that uses EU-wide (or 

globally available) data so that it can be applied to give a baseline assessment of all EU cities 

in the Urban Audit database; 

 Development of a suite of EU-wide climate hazard modelling tools for flooding, heatwaves 

and droughts; 

 Development of an EU-wide exposure and vulnerability assessment of each city in the Urban 

Audit  database; 

 Integration of exposure, vulnerability and hazard datasets to evaluate risks. 

The spatial database of vulnerability, exposure, hazard and risk indices for all 571 cities will be 

uploaded to the EU Climate Adapt (European Climate Adaptation Platform) and the EEA Climate 

Change Data Centre. The results provide information on hazard, exposure, vulnerability and risks to 

enable the prioritisation of national and EU-wide adaptation investments. Furthermore, by assessing 

the components of risk separately the results provide important insights into the nature of appropriate 

adaptation strategies– whether to focus on engineered adaptation and/or strengthening socio-economic 

capabilities.  

Risk is not just a function of hazard, but also of socio-economic vulnerabilities. This risk assessment 

methodology can be used to assess the relative priorities for cities: in terms of the most significant 

risks for each city, and whether the relative contribution of hazard or vulnerability to that risk. Some 

cities have relatively low hazard scores but high exposure and/or vulnerability, whilst other cities have 

relatively high hazard and low exposure, and/or vulnerability. This enables climate risk managers to 

prioritise hazard management interventions, or approaches to reduce vulnerability and build adaptive 

capacity. The results provide information of use to national and EU policy makers to inform the 

prioritisation of investment in particular risks and across European regions. 

Heat and drought risks are significant in a number of locations but show significant variability. 

Typically cities in Northern European latitudes are less likely to be exposed to significant drought 

hazard than those in Southern latitudes. Most notably, the variability in hazards exceeds those reported 

by previous analyses which have only been based upon a small number of model results. Under the 

high impact hazard results, increases in heatwave risk and peak temperatures are prevalent across all 

EU cities. The UK (and parts of Scandinavia) are expected to experience the greatest impacts in terms 

of changes in fluvial flooding hazard while much of the Mediterranean region is not expected to see an 

increase, even in the high impact scenario. 

The pattern of exposure, vulnerability and risk varies across European cities. Drought risk 

management should be a priority for those cities located around the Mediterranean and Black sea 

basins. Heatwave risks are generally greatest for central European cities (mainly in the Danube and 

Rhine basins) due to both comparatively larger hazards and vulnerabilities. Pluvial and fluvial risks 

have no clear spatial pattern, as hazards, exposure and vulnerabilities are dominated by local context 

and geography.  Similarly, risks to coastal floods are mostly driven by exposure, with low-lying cities 

in the Netherlands, France and Germany having the greatest risk. 

The methods developed provide a number of important advances over previous high level 

assessments. This includes a focus here on urban risk analysis; consideration of over 50 climate model 

simulations from CMIP5 to explore the range of climate hazard uncertainties; application of high 

resolution process models using cloud computing; and development of a flexible, stable, scalable and 

transparent indicator-based vulnerability assessment and risk analysis method tested by combining 58 

sources of information within 571 cities. The very nature of a high level approach makes it unsuitable 

for local risk analysis, or emergency planning. Further work in RAMSES WP3 is developing tools for 

detailed risk analysis. 
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1 Introduction 
 

Most part of quantitative climate change risk assessments developed at the urban and sub-urban scales 

rely on the availability of accurate information on potential climate change hazards. This information 

is usually derived from General Circulation Models that are regionalised by means of dynamic or 

statistical downscaling techniques. On this basis, hazard information at the local level can be 

expressed as probabilistic distributions of climate events characterised in terms of return periods and 

intensities of occurrence. This information, together with value estimates of the exposed assets, allows 

the quantification of the expected losses linked to specific climate change threats. Potential losses are 

frequently communicated as ‘damage’ or ‘vulnerability functions’. 

However, the underlying data needed to produce probabilistic distributions of climatic events under 

climate change scenarios are not always available at the local level (Kunreuther et al., 2013). 

Furthermore, when hazard information is available accurate cost estimates linked to specific climate 

change threats are difficult to assess in the face of social and economic vulnerability factors. Although 

some works provide some solid estimates on the potential impacts of climate-driven events (see e.g. 

the work on floods by Kocornik-Mina et al., 2015), most of them rely on a limited number of 

dimensions that are directly linked to the physical characteristics of the events themselves, such as e.g. 

flood extension, depth and velocity in the case of floods, as well as to the structural characteristics of 

the building stock, like e.g. houses with lowest floor below ground level retrieved from remote sensing 

data or similar tools. Still, damage cost assessments derived from these calculations can also be quite 

context-specific, undermining comparability across spatial units.  

In parallel, both the traditional climate change vulnerability assessments based on sensitivity and 

adaptive factors (Cutter et al., 2003; Turner, Kasperson, et al., 2003), as well as the resilience analyses 

that have proliferated over the last years basing on concepts like robustness, redundancy, 

resourcefulness and rapidity (Cutter et al., 2010), deliver estimates of urban vulnerabilities and 

resilience, respectively, based on multi-criteria assessments built upon a variable number of socio-

economic dimensions. However, these assessments are rarely combined with climate information 

and/or integrated into broader risk analysis frameworks. 

Still, in Europe continental scale risk analysis is increasingly possible as a result of increased 

availability of European and global dataset and computing power. However, the quality and detail of a 

vulnerability and risk analysis is contingent on the availability and quality of data to support the 

analysis. There are many datasets available across the EU (e.g. Urban Audit and the European Climate 

Assessment & Dataset programme) and globally (e.g. GRUMP: global land use data, WorldClim: 

climate observations and model outputs). Generally, these provide only a limited number of variables 

or are reported at low resolutions. Meanwhile, many countries and cities have bespoke data collection 

activities that provide opportunities for more detailed analysis.  

To take advantage of the opportunities provided by ‘the best available’ data, whilst also providing a 

platform for ‘comparable and transferable’ risk analysis Work Package (WP) 3 of the RAMSES 

project is developing a suite, covering a range of levels of sophistication, of urban vulnerability and 

risk analysis tools – to provide different types of risk information to support a range of decisions, as 

shown in Table 1. This report describes the high level method for climate risk analysis of EU cities 

developed under WP3.1 of the RAMSES project. 
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Benchmarking 

Nationwide 
assessment of 
sustainability in cities 

Identification of 
national priorities 

Planning policy and 
national directives 

 

Regional and urban 
planning 

Spatial development 
strategies 

Strategic assessments 

 

 

Detailed design 

Neighbourhood 
planning 

Infrastructure design 

Building design and 
orientation 

Satellite observations 

Energy generation 

Rainfall, temperature 
monitoring 

Traffic and local air quality 
monitoring 

Airborne lidar and 
photogrammetry 

Property location, land use 
and land cover 

Population and 
demographic information 

Travel, energy, 
consumption and waste 
surveys 

Smart sensors and building 
air quality, energy and 
water monitoring 

Terrestrial and mobile laser 
scan 

Individual and mobile 
phone sensors 

Indicator and checklists 

GIS overlays 

Global and regional 
climate model outputs 

Accounting tools 

Quantified modelling of 
risks and sustainability 

Integrated assessment 
models 

Urban metabolism 

Land use and demand 
modelling 

Weather generators 

High resolution simulation 
and process models of 
selected urban functions 

Industrial ecology and life 
cycle analysis 

Engagement with 
individuals, community 
groups and other 
stakeholders 

Table 1 Hierarchy of methods, decisions they might be used to inform and the type of data 

and methods appropriate to the scale of analysis.  

 

 

1.1 Aim and objectives 

The aim of WP3.1 is to develop a climate risk evaluation methodology that can be applied to all EU 

cities to identify priorities for national and EU adaptation investments. This is done by combining 

hazard, exposure and vulnerability information in a coherent, flexible, stable, scalable, transparent and 

integrated risk analysis. 

The objectives of WP3 are to: 

 Identify stakeholder priorities for city-scale climate risk and vulnerability assessment. 

 Develop a framework for city-scale climate risk analysis that uses only EU-wide (or global) 

data so can be applied to give a baseline assessment of all EU cities in the Urban Audit 

database; 

 Develop a suite of EU-wide climate hazard modelling tools for flooding, heatwaves and 

droughts. 

 Develop an EU-wide vulnerability assessment of each city in the Urban Audit  database. 

The results in the form of a spatial database of vulnerability, exposure, hazard and risk indices for each 

Urban Audit  city, will be uploaded to the EU Climate Adapt (European Climate Adaptation Platform) 

and the EEA Climate Change Data Centre. 
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1.2 Risk analysis 

Our analysis follows the conceptual framework proposed by the IPCC on the WGII AR5 (IPCC, 

2014). As illustrated by Figure 1, the IPCC framework clearly identifies the three core components of 

climate change –driven risk, namely hazard, exposure and vulnerability: “risk results from the 

interaction of vulnerability, exposure, and hazard” (IPCC, 2014, glossary). 

 
Figure 1: The conceptual framework proposed by the IPCC WGII-AR5 (2014). 

 

Under this framework exposure remains a core component of risk, but it has been totally separated 

from the concept of vulnerability. This latter term is defined in the WGII AR5 as “the propensity or 

predisposition to be adversely affected”. It is then mentioned that “vulnerability encompasses a variety 

of concepts and elements including sensitivity or susceptibility to harm and lack of capacity to cope 

and adapt” (IPCC, 2014, Glossary). In other words, the WGII AR5 recognises two core dimensions of 

vulnerability, namely sensitivity and adaptive or coping capacity
1
.  

 

Figure 2: The operational framework developed within the high level’ vulnerability and risk 

analysis for European cities. 

 

                                                      

 

 
1 Sensitivity can be defined as “the degree to which a system is affected, either adversely or beneficially, by climate-related stimuli”, 
and Adaptive capacity as “a system’s ability to adjust to climate change (including climate variability and extremes), to moderate 

potential damage, to take advantage of opportunities or to cope with consequences” (IPCC, 2001). 
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Following this same rationale, risk will be characterised in this analysis as a function of three 

components hazard, exposure, and vulnerability, whereas vulnerability will be assessed as a function 

of two dimensions, sensitivity and response or adaptive capacity, as shown in the diagram included in 

Figure 1. The sensitivity and adaptive capacity dimensions are characterised in this work through a 

number of mutually exclusive socio-economic and physical attributes that shape the propensity or 

predisposition of citizens and cities to be adversely affected by climate change. 

 

 

1.3 Overview of EU-wide analysis of urban risk linked to climate change  

The high level vulnerability and risk analysis approach uses EU and global datasets to enable a 

universally-comparable climate change risk analysis of cities.  

 

 

Figure 3: Overview of ‘high level’ vulnerability and risk analysis for European cities 

 

An overview of the approach and some of the datasets that will be used are shown in Figure 3. Risk 

indices are calculated as a function of the climate change-driven hazards (Section 2), exposure 

(Section 3) and vulnerability (Section 4) of an urban area. 

Our approach builds upon, and integrates, existing initiatives for hazard modelling of broad scale 

drought risk (Blenkinsop and Fowler, 2007), sea level rise (Nicholls and de la Vega-Leinert, 2008), 

fluvial flood risk (Barredo, 2007; Dankers and Feyen, 2009), heat risk (Fischer and Schär, 2010; 

Lissner et al., 2012), etc. Similarly, the vulnerability assessment builds upon previous EU research 

(Holsten and Kropp, 2012; Schauser et al., 2010; Stefan Greiving et al., 2011) whilst we also benefit 

from other RAMSES research, such as an assessment of climate change impacts in EU coastal cities 

(Boettle et al., 2016). 
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1.3.1 Scope  

Cities shelter more than half of world’s population. In the EU, over 75% of the population already 

lives within urban areas, and it is expected that this proportion will grow up to 82% by mid-century 

(UN-Habitat, 2011). Inevitably, a larger concentration of population, frequently achieved through 

rapid urbanization in previous decades, implies more risks derived from the potential impacts as 

climate change, as population, assets and economic activities concentrates on these areas (EEA, 2012; 

IPCC, 2014). Furthermore, urban areas are the direct or indirect cause of the largest share of the 

environmental impacts. In particular, cities are held responsible for over 75% of greenhouse gas 

emissions worldwide (UN-Habitat, 2011; World Bank, 2010). 

Understanding these trends is thus crucial to avert potential damages linked to climate change and to 

minimise the impact of cities themselves on the global environment. But cities are not simple objects 

to analyse. Urban areas are shaped by the complex relations held among different sectors that integrate 

the coupled human-environment urban systems. These include the built environment, the 

infrastructures, the human, social and natural assets, the production systems, etc. (Liu et al., 2007; 

Turner, Matson, et al., 2003). Whereas these overlaps enable synergies between various elements, they 

also pose an enormous challenge in terms of adaptation planning (IPCC, 2014). From a climate risk 

management perspective (IPCC, 2012), the links and interactions among these components and 

between each of them and the hazardous climatic events that might trigger disasters shape the 

susceptibility of cities to harm and their capacity to resist and recover from such events (Cardona, 

2005; Cutter et al., 2010).  

 

 

Figure 4: Managing complexity within a climate change risk analysis. 

 

If these risk components are to be sufficiently characterised through indicators, it is crucial to 

understand how they interact within an urban context. In principle, this calls for the development of a 
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systematic inventory of all the potential threats, elements at risk and vulnerability factors. Still, there is 

an obvious trade-off between the number of dimensions considered and eventually combined within 

any indicator-based risk analysis and the interpretability and usability of its analytical outcomes. This 

stems from the following empirical considerations, that are expressed graphically in Figure 4: 

 

 In areas affected by more than one threat the number of hazards to consider in the analysis 

could be large. 

 There is a potentially limitless number of ‘sectors’, ‘impact domains’ or ‘elements at risk’ that 

could be assessed. 

 The methodological alternatives to aggregate the indicators are also abundant. 

 

Each one of the smaller cubes shown in Figure 4 represents a tri-dimensional space where the climate 

change threats, vulnerability d and elements at risk interface. Ideally, all these units could be 

individually characterised by means of indicators, as in a traditional multi-criteria assessment. In 

practice, though, characterising such small interaction spaces is very demanding in terms of data.  

This calls for restricting the number of threats and sectors to analyse. In order to operationalise the 

process, we have first narrowed the assessment down to the most relevant climate change threats and 

the most relevant receptors of such threats within a European urban context. This has been done 

relying on a comprehensive literature review on previous risk and vulnerability assessments focusing 

totally or partially on the urban setting. The review included more than 170 peer-reviewed scientific 

papers and other relevant reports. Appendix B provides additional details on how literature review has 

been conducted. 

 

Threat Total number of papers reviewed 

Multi-hazard 121 

Heatwaves 19 

Floods (fluvial and pluvial) 17 

Coastal floods due to storm surges 9 

Droughts 10 

Table 2: Scoping of relevant indicators through a literature review. 

 

Basing on this work, such urban sub-systems that are more likely to suffer damages under each impact 

chain – or that could be impacted on the first place and then ‘transfer’ impacts to other domains – were 

selected and associated to the relevant climate change-driven hazard. A restricted list of potential 

hazard-receptor combinations were thus formalised as a series of impact chains – or more simply 

threats – under analysis: 

 

1. Heatwaves (HW) on human health. 

2. Flooding (pluvial [FLP], fluvial [FLF] and coastal [FLC]) on the socio-economic tissue 

and the urban fabric. 

3. Drought (DR) on water planning. 
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1.3.2 Data model  

In coherence with the conceptual and operational frameworks described above, and taking into 

account the limitations imposed by data availability, a restricted number of hazard, exposure and 

vulnerability indicators have been selected as a basis for our EU-wide urban climate change risk 

analysis. This selection has been done in terms of the relevance and availability of the potential 

indicators, according to the scientific literature reviewed in this project, as described on Appendix B: 

Hazard indicators include indices that inform on the expected relative change of the potential 

climate change-driven threats in terms of the expected variation in the intensity and frequency 

of the potential events triggered by the underlying climatic conditions. Such events include 

floods (coastal, fluvial and pluvial), droughts and heatwaves. Most of the hazard indicators 

included in this assessment were explicitly produced for this study. These indicators have been 

mainly generated by means of modelling techniques basing on a new generation of general 

circulation models (GCMs) made available by the Coupled Model Intercomparison Project 

Phase 5 (CMIP5). A detailed description of these indicators and the methodology used to 

derive them can be found in Section 2. 

Exposure indicators characterise the degree to which cities’ population and assets could be 

directly affected by climate change-driven threats. For some threats (e.g. floods), this implies 

providing estimates of the portion of the city that could be directly affected by such impacts 

under a number of climate scenarios. In other cases (e.g. heatwaves and droughts) it was 

assumed that the entire urban areas are equally exposed to climate change –driven threats. 

Section3 below provides a description on the exposure indicators used in this assessment. 

Vulnerability indicators include variables that illustrate the characteristics of the potential 

receptors of the climate change impacts in terms of their sensitivity to such impacts and their 

capacity to resist, cope or adapt to them. Vulnerability indicators have been thus classified into 

two separate groups influencing vulnerability in the opposite direction, labelled as ‘sensitivity’ 

– including those factors that increase vulnerability – and ‘adaptive capacity’ – comprising 

factors that reduce vulnerability –. Although some new adaptive capacity indicators have been 

produced relying on internet searches and other relevant sources, as accurately described in 

Section 4, most of the vulnerability indicators considered in this study have been obtained 

from the Urban Audit Database. Section 4 provides a detailed description of these indicators. 

 

The assessment has been performed on the 571 cities included in the GISCO Urban Audit 2004 by 

April 2014. 
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2 Climate change Hazard Assessment 

2.1 Overview 

Following discussion with stakeholders regarding their priorities for high level risk information, and 

drawing from an extensive review of adaptation strategies in EU cities (Reckien et al., 2014) and work 

undertaken in RAMSES work package 9 (Terenzi and Wigström, 2014), and the EU Cities Adapt 

survey (Ricardo-AEA, 2013), flooding, heatwaves and drought were identified as the priorities for this 

assessment. Storms, fourth ranked on the priority list, have been identified as a priority for further 

work. Moreover, because climate models poorly represent storm processes, assessing future storm 

risks is highly uncertain. 

The latest generation of general circulation models (GCMs) from the fifth phase of the Climate Model 

Intercomparison Project (CMIP5) were used to assess changes in heatwaves, floods and drought 

conditions for all cities in the European Urban Audit database. All available climate model runs were 

used in order to assess a wide range of possible futures, therefore providing the basis for risk analysis 

and thereafter identification of robust adaptation strategies.  

While changes in heatwaves and droughts can be calculated directly from climate models’ output, the 

assessment of flooding requires further modelling to convert changes in rainfall to changes in flooded 

area. Furthermore, the low spatial resolution of GCMs makes them unsuitable to model extreme 

rainfall and therefore their rainfall outputs cannot be used to assess changes in pluvial flooding 

directly. This report presents the results of the hazard assessment in terms of droughts and heatwaves 

but only a provisional methodology in terms of changes in pluvial and fluvial floods as this work is 

still ongoing.  

 

 

2.2 Climate model outputs 

A new generation of general circulation models (GCMs) are available from the fifth phase of the 

Coupled Model Intercomparison Project Phase 5 (CMIP5). Daily rainfall, maximum and minimum 

temperature outputs from CMIP5 models for RCP8.5 were downloaded from the British Atmospheric 

Data Centre (BADC). Sanderson et al. (2011) showed that RCP8.5 is similar to SRES A1FI and, 

although these are the highest emission scenarios considered by IPCC, they still assume emissions 

well below what the current energy mix would produce in the future.  

Outputs from 39 GCMs were available to download, many of which had several runs with different 

initial conditions. These models have different projections, spatial resolutions and calendars (standard, 

no leap, or 360 days) and the period of data available also depended on the GCM. In the end, for the 

period 1951-2100, 54 model runs were available with both daily maximum and minimum temperature 

and 55 were available for daily rainfall.  

However, questions remain on how to use the outputs of multi-model ensembles in impact studies. 

Averaging across models is widely used but is hard to interpret and defend (Knutti et al., 2010a) and it 

may produce physically implausible results (Knutti, 2010). Furthermore, since a general all-purpose 

metric to evaluate climate models has not been found, and different metrics produce different rankings 

of models, excluding or weighting models might lead to overconfidence in the projections and 

unjustified convergence (Knutti et al., 2010a). Building a probability density function (PDF) of change 
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implies the assumption that the models are independent, distributed around a “perfect model” and 

sample the range of uncertainty (Knutti, 2008). However, CMIP models are not independent, therefore 

model agreement might not be an indication of likelihood but a consequence of shared process 

representation and/or calibration on particular datasets (Knutti et al., 2010a). Also the sampling of 

models is not random or systematic (Knutti, 2010). 

On the other hand, choosing a few models that are representative of the range of climate model outputs 

from CMIP5 allows for an assessment of the uncertainties associated with the projections and permits 

different adaptation strategies to be studied for different possible futures leading to robust adaptation. 

Nonetheless, one has to consider that the extreme ends of the plausible range might not be sampled 

and that the chosen outcomes might be perceived as equally probable (Knutti et al., 2010b). 

For this study, indicators of droughts, floods and heatwaves were calculated for all the climate models 

outputs, for all European Urban Audit cities. However, for tractability results are only reported for 

three impact scenarios per city: “High, “Medium” and “Low” which correspond to the percentiles 90, 

50 and 10 of the distribution of the indicator, calculated from the climate model runs, for each city. As 

explained above, these should not be interpreted as probabilities, and the three scenarios should only 

be seen as indicative of the range of outputs from CMIP5.  

 

 

2.3 Data for broad scale climate hazard assessment 

The data used for assessing climate hazards across European cities is: 

 EU-DEM – a Digital Elevation Model over Europe "produced using Copernicus data and 

information funded by the European Union" available from http://www.eea.europa.eu/data-

and-maps/data/eu-dem. The EU-DEM is a hybrid product based on Shuttle Radar Topography 

Mission (SRTM) and ASTER GDEM data with 25m resolution (projection 3035: EU-DEM-

3035). 

 Hydro1K Europe – geographic database produced by the US Geological Survey at a resolution 

of 1km (USGS, 2011). It includes a hydrologically corrected digital elevation map and several 

topographical derived datasets of which both the flow direction raster and flow accumulation 

raster were used for the assessment of fluvial flooding.  

 Global Runoff Data Centre (GRDC) – international archive with observed discharge of gauges 

throughout the world available at http://www.bafg.de/GRDC/EN/Home/homepage_node.html 

used for the assessment of fluvial flooding.  

 Urban Morphological zones 2000 (http://www.eea.europa.eu/data-and-maps/data/urban-

morphological-zones-2000-2) defined as “set of urban areas laying less than 200m apart”. This 

European Environment Agency (EEA) dataset was build based on the urban land cover classes 

of the CORINE LAND COVER dataset. This dataset was used to define “city area” in the 

calculations of percentage of city flooded for the pluvial flooding analysis.  

 Urban Audit dataset “GISCO Urban Audit 2004” was used for delimitation of cities. 571 cities 

(city region level) were studied (see Figure 5). 

 

http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.bafg.de/GRDC/EN/Home/homepage_node.html
http://www.eea.europa.eu/data-and-maps/data/urban-morphological-zones-2000-2
http://www.eea.europa.eu/data-and-maps/data/urban-morphological-zones-2000-2
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Figure 5: Map of Europe with selected cities from Urban Audit that will be studied. 

 

 Daily rainfall, maximum and minimum temperature from CMIP5, RCP8.5: 

- 39 GCMs with different projections, spatial resolutions and calendars (standard, no leap, 

or 360 days); 

- 131 model runs available to download (March 2014) from the BADC; 

- Time-periods available depend on the model run; 

- format of data: netCDF. 

 

 e-obs, an European daily gridded data set for precipitation and maximum, and mean surface 

temperature from http://www.ecad.eu/download/ensembles/download.php:  

- 0.25 degree resolution  

- period 1950–2013; 

- based on observations; 

- format of data: netCDF 

The maps of the gauge networks used to produce the e-obs dataset (see Figure 6) show uneven 

coverage throughout Europe, with the UK, Ireland, the Netherlands and Switzerland having a much 

higher gauge density. 2316 stations were available, although the number changes over time showing a 

sharp rise in the number of gauges from 1950 to 1960 and a dip in 1976 (for stations with less than 

20% missing monthly data). The dataset was designed to provide best estimates of grid-cells averages 

(not point values) which was achieved by interpolating to a finer grid and then averaging to create a 

coarser grid (the one available).  

http://www.ecad.eu/download/ensembles/download.php
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Figure 6: Map of Europe with the station network for precipitation (left) and mean temperature (right) used to produce the 

gridded dataset e-obs (adapted from M. R. Haylock et al. (2008)). 

 

Using the e-obs dataset, European maps of annual and monthly rainfall were calculated, as well as 

mean monthly and mean maximum temperatures (Figure 7 - Figure 10).  

 

Figure 7: European map of mean annual rainfall (mm) calculated based on e-obs dataset. 
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Figure 8: European maps of monthly mean rainfall (mm) calculated based on e-obs dataset. 

 

 

Figure 9: European maps of mean monthly mean temperature (°C) calculated based on e-obs 

dataset. 
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Figure 10: European maps of mean monthly maximum temperature (°C) calculated based on 

e-obs dataset. 

 

 

 For the pluvial flooding analysis, several observed sub-daily rainfall datasets were combined: 

o 38 European gauges with time-series of annual maximum hourly rainfall, provided by 

Dr Panos Panago, from the Joint Research Centre, that were collected under the 

auspices of the REDES project (Panagos et al., 2015).  

o 192 UK gauges with time-series of annual maximum hourly rainfall, provided by Dr 

Stephen Blenkinsop from Newcastle University, that were collected under the 

auspices of the CONVEX project (Blenkinsop et al., submitted). These data was 

collected from three sources: the UK Met Office Integrated Data Archive System 

(MIDAS), the Scottish Environmental Protection Agency (SEPA) and the UK 

Environment Agency (EA). Not all of these gauges were used, since that would mean 

the density of gauges used in the UK would be well above the density of gauges in the 

rest of Europe, which would affect the results of the analyses.  

o One gauge (Catraia) with hourly time-series for the South of Portugal downloaded 

from the Portuguese National Water Resources Information System (http://snirh.pt/). 

o IDF curves were collated for: 

 Athens, Grece (Koutsoyiannis and Baloutsos, 2000); 

 Malaga, Spain (Ayuso-Muñoz et al., 2015); 

 Ebre, Spain (Pérez-Zanón et al., 2015) 

 Trondeheim, Norway (Hailegeorgis et al., 2013) 

 

http://snirh.pt/
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2.4 Heatwaves 

2.4.1 Introduction 

The late 20
th
 and early 21

st
 centuries in Europe have been the warmest of the last 500 years, with 2003 

being by far the hottest summer (Luterbacher et al., 2004). The last decade has seen record-breaking 

heatwaves throughout the world and summer temperature records have increase by more than a factor 

of 10 in parts of Europe, due to prolonged heatwaves (Coumou et al., 2013). 

A heatwave is a period of consecutive days with hot temperatures where both length and peak 

temperature are important. Heatwaves arise from the combination of large scale processes (like dry 

blocking conditions) and small scale process (for example, dry soils tend to favour anticyclonic 

conditions) whose interactions are not fully understood (Vautard et al., 2013). 

To assess the performance of RCMs from the EURO-CORDEX ensemble for simulating heatwaves in 

Europe, Vautard et al. (2013) used data from 8 simulations at 12km and 13 simulations at 50km for 

the period 1989–2008. They found that despite the large spread of results of RCMs (all using a 

historical reanalyses dataset – ERA-Interim – as boundary conditions), in general these models are 

simulating heatwaves that are too hot and too persistence, even after removing their temperature 

biases. Furthermore, interannual variability is generally also overestimated. Moreover, the higher 

resolution models only showed improvements in coastal areas, in other areas improvements were not 

observed, not even in mountainous areas.  

 

Nevertheless, using the EURO-CORDEX model ensemble, Jacob et al. (2013) project that the mean 

number of heatwaves (defined as 3 consecutive days exceeding the 99
th
 percentile of the daily 

maximum temperature for May to September for the period 1971–2000) will increase in all Europe for 

2071-2100 (under RCP8.5). They found that the bigger increase will be in Southern Europe which will 

see more than 45 extra heatwaves. These increases are mostly robust and significant throughout the 

model ensemble but the change in the number of heatwaves depends considerably on the definition of 

heatwave. Using a different definition (more than 5 consecutive days with daily maximum temperature 

exceeding the mean maximum temperature for May–September of the control period by at least 5°C) 

the increase in the number of heatwaves in only seen in parts of the Southern Europe, and the changes 

are restricted to a maximum of 9 extra heatwaves. 

 

Fischer and Schär (2010), looked at future projections of heatwaves in Europe using six RCMs driven 

by 3 GCMs from the ENSEMBLES project
2
. They conclude that Iberia and the Mediterranean region 

will see the biggest changes in number of heatwave days (from around 2 days per summer in 1961-

1990 to 27 to 67 in 2071-2100). However, in terms of heatwave amplitude, the biggest increase are 

over south-central Europe (zonal belt along the northern Mediterranean coasts centred at about 45° N). 

For this region, warming in the extreme temperatures (99
th
 percentile) is much higher than the 

warming in the mean summer temperatures (more than 50%). In contrast, in southern Europe the 

warming of the mean and extreme temperatures is similar. This is explained by a higher increase in 

temperature variability in south-central Europe due to circulation changes and due to a reduction in 

soil moisture. In this region, the changes in the 99
th
 percentile, reach up to 7K. The authors also point 

out that this results are qualitatively consistent with the Prudence and Ensembles climate models.  

 

                                                      

 

 
2 http://www.cru.uea.ac.uk/projects/ensembles/ScenariosPortal/Data3RCM.htm  

http://www.cru.uea.ac.uk/projects/ensembles/ScenariosPortal/Data3RCM.htm
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2.4.2 Methodology 

There is no standard definition of heatwave and the World Meteorological Organization (WMO) has 

not defined the term (WHO, 2004). Therefore different definitions of heatwaves are used, for example: 

 The definition of heatwave for the EuroHEAT project for the summer period (June-August) is: 

days in which maximum apparent temperature (Tappmax) exceeds a threshold (90
th
 percentile 

of Tappmax for each month) for at least 2 days and continues as long as Tappmax is higher 

than its median value and minimum temperature (Tmin) exceeds its threshold (90
th
 percentile 

of Tmin for each month) (Michelozzi et al., 2007).  

 Vautard et al. (2013), looking at heatwaves in the EURO-CORDEX RCMs, defined them as a 

period of at least six days with temperatures above the 90
th
 percentile of the simulated daily 

mean temperature for summer (JJA).  

 Fischer et al. (2008) studied changes in European heatwaves using the ENSEMBLES dataset 

and defined heatwave as six consecutive days with maximum temperatures exceeding the 

local 90
th
 percentile of the control period (1961–1990) in summer (JJA). 

A relative threshold (a percentile) has advantages over absolute thresholds since it accounts for the 

local climates while allowing the same definition of heatwave throughout Europe. Also, by using a 

relative threshold, heatwaves can be calculated directly with temperature from the climate models 

(without bias-correction) since the historical period simulation of the climate model is used for the 

definition of the threshold. 

In this deliverable, the definition of heatwave is three consecutive days where both the maximum and 

the minimum temperature are above their respective historical 95 percentiles. The season of interest 

for the analysis of heatwaves was considered to be May to September. Despite this common definition 

of heatwave throughout the project, different definitions of historical and future periods are present 

due to different computational needs associated with different methodologies. For task 3.1, the 

historical period is defined as 1951-2000 and the future period is defined as 2051-2100. 

The definition of which percentile to use was done based on the number of heatwaves for the historical 

period (1951-2000) projected by climate models for the low, medium and high impact scenarios for 

each city (see Figure 11 and Figure 12). Three thresholds were considered: 90
th
, 95

th
 and 98

th
 

percentiles. Using the 98
th
 threshold, three cities have no heatwaves in the historical period for the low 

impact scenario and therefore this definition of heatwave was considered too stringent. Like-wise, the 

90
th
 was considered too yielding with all the European cities having more than one heatwave a year in 

the historical period for the highest impact scenario.  
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Figure 11: Maps of Europe with the number of historical (1951-2000) heatwaves per year calculated 

using a 90th, a 95th and a 98th percentile threshold (all with 3 days duration) shown for a low (10th 

percentile) impact scenario (left), a medium (50th percentile) impact scenario (middle) and a high (90th 

percentile) impact scenario (right) for each European city.  
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Figure 12: Histograms of historical (1951-2000) number of heatwaves per year calculated 

using a 90th, a 95th and a 98th percentile threshold (all with 3 days duration) shown for a low 

(10th percentile) impact scenario (left), a medium (50th percentile) impact scenario (middle) 

and a high (90th percentile) impact scenario (right) for each European city.  

 

Climate model outputs were used directly to assess the change in number of heatwave days and 

changes in maximum temperature of heatwaves, between the historical (1951-2000) and the future 

(2051-2100) periods. Each European city was assigned the outputs of the climate model grid cell 

where it is located. 

Two indicators were calculated, for each GCM and each city:  

 change in the percentage of heatwave days (i.e. difference between future and historical 

percentage of heatwave days); 

 and changes in maximum temperature of heatwaves (i.e. difference between the maximum 

temperature felt during a heatwave in the future period and in the historical period). 
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2.4.3 Results 

There is a projected increase in the number of heatwave summer (May to September) days for all 

European cities under the three impact scenarios considered (Figure 13). These differences range from 

an extra 4% of summer days considered heatwave days in the low scenario in Norway to an extra 63% 

of summer days considered heatwave days in the high scenario in Malta. In general, the increases are 

higher in southern Europe, although some coastal northern European cities also see big increases 

(around 50% in the high impact scenario).  

The maximum temperatures felt during heatwaves are also projected to increase for all European cities 

under all scenarios (Figure 13). This range from around 2°C in cities in Scandinavia and Scotland 

under the low impact scenario to an increase of 14°C in central Europe under the high scenario. The 

higher temperature increase are projected for the European mid latitudes (i.e. central Europe, parts of 

France and Northern Portugal and Spain).  

This dichotomy of higher increases in frequency of heatwave days in Southern Europe but higher 

increases in maximum temperatures in European mid latitudes has been found in previous studies 

(Fischer and Schär, 2010) associated with higher increases in temperature variability in European mid 

latitudes. However, the increases in maximum heatwave temperature projected in the high impact 

scenario (reaching up to 14°C) have not, to the best of our knowledge, been analysed or reported 

before. These differences in results are possibly explained by the use of 54 GCM runs to assess 

possible changes in heatwaves, therefore investigating a much wider range of possible futures than 

previous studies. 
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Figure 13: Change (difference) in the percentage of days classified as heatwaves days (left) 

and change in the maximum daily maximum temperature for days classified as heatwaves 

days (right). Both shown for a low (10th percentile) impact scenario (top), a medium (50th 

percentile) impact scenario (middle) and a high (90th percentile) impact scenario (bottom) for 

each European city. The changes are calculated between the historical period (1951-2000) 

and the future period (2051-2100). 
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2.5 Drought  

2.5.1 Introduction 

There is no universally accepted definition of drought. It can be defined in terms of meteorological, 

hydrological, agricultural or socio-economic conditions and consequently a large number of different 

drought indices exist (Lloyd-Hughes and Saunders, 2002). The common ground between all 

definitions is the cause of drought – a deficit in precipitation. The problems arise in the determination 

of the time period over which this deficit accumulates and the relations between the deficit in rainfall 

with deficits in usable water sources and impacts therein (McKee et al., 1993).  

Drought is not a distinctive event; it might only be recognised several months after it starts, it might be 

interrupted by wet spells and depending on what type of drought is being considered it can terminate 

at different times (Phillips and McGregor, 1998). Bordi et al. (2009) define meteorological drought as 

abnormally low precipitation over a few months and hydrological drought as deficiencies in surface 

and sub-surface water supplies caused by a reduction in precipitation over the period of one year or 

more.  

Assessment of changes in drought depends on the type of drought being studied (meteorological, 

agricultural, hydrological, socio-economic, etc.) and on the drought index chosen. Also, drought 

projections are still more uncertain than other aspects of the water cycle. Nevertheless, drying in the 

Mediterranean region, under RCP8.5 is likely, associated with changes in the Hadley Circulation, and 

reductions in runoff are also likely in Southern Europe, while increases in runoff are likely in high 

northern latitudes (IPCC, 2013). In central Europe and in the Mediterranean region, droughts are 

projected to become longer and more frequent (Jiménez Cisneros, 2014). 

Forzieri et al. (2014) using 12 members of ENSEMBLES and a hydrological model (LISFLOOD), 

concluded that the discharge decreases in the South of Europe and the increases in the North of Europe 

are highly significant, but in between (the transition zone) the projections are more discordant. 

 

2.5.2 Methodology 

To characterize drought behaviour, the Drought Severity Index (DSI) was used. It was originally 

proposed by Bryant et al. (1992) and defined by Phillips and McGregor (1998), it is based on 

cumulative monthly precipitation anomalies and can be calculated for different time-scales. The time 

scale of 12 months (DSI-12) was chosen to reflect possible deficiencies in surface and sub-surface 

water supplies as defined by Bordi et al. (2009). 

DSI-12 was calculated using the following procedure: 

 If the rainfall anomaly in month t is negative (i.e. rainfall is below the mean for that month) 

and rainfall in the twelve previous months is lower than its twelve-monthly mean, a drought 

sequence is initiated in month t; 

 DSI-12 for month t is then a positive value equal to the precipitation anomaly in month t.  

 The DSI for the following month (t+1) is the rainfall anomaly of month t plus the rainfall 

anomaly of month t+1, but only if the twelve-monthly mean total for the months t-11, to t+1 

has not been exceeded. When this mean is exceeded the drought sequence terminates and DSI-

12 is assigned a value of zero.  
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To standardise the index, the absolute deficit (in mm) is divided by the mean annual rainfall and 

multiplied by 100. Therefore the final index value expresses the accumulated precipitation deficit as a 

percentage of the mean annual rainfall.  

DSI-12 time-series were calculated for all cities and for all GCMs that had data from 1950 to 2100 

(each city was assigned the outputs of the climate model grid cell where it is located). Subsequently, 

these DSI-12 time-series were subsetted for the historical period (1951-2000) and future period (2051-

2100) and the maximum DSI-12 (for each GCM and each city) was calculated for both periods. Figure 

14 and Figure 15 show the PDFs of these maximum DSI-12 values for the Newcastle-Upon-Tyne 

grid-cell and for Lisbon grid-cell (respectively), as examples of two cities with very different future 

drought behaviour.  

 

Figure 14: Histograms and PDFs of the maximum DSI-12 for each GCM for Newcastle-

Upon-Tyne grid cell for both the historical (1951-2000) and future (2051-2100) periods. 
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Figure 15: Histograms and PDFs of the maximum DSI-12 for each GCM for Lisbon grid cell 

for both the historical (1951-2000) and future (2051-2100) periods. 

 

Two indicators were calculated, for each GCM and each city, based on these maximum DSI-12 values:  

 the probability for any given month in the future to be above the maximum historical DSI-12; 

and, 

 the change factor of maximum drought, i.e., future maximum DSI-12 divided by historical 

maximum DSI-12. 

 

2.5.3 Results 

The probability of having unprecedented droughts (shown by the probability for any given month in 

the future being above the historical maximum DSI-12 in Figure 16, left) in high and mid European 

latitudes is non-existent for the low impact scenario. For the medium impact scenario, this is only seen 

in Northern Europe, and for the high impact scenario, almost all Europe can experience unprecedented 

droughts. This northern expansion of possible worsening of drought conditions is not found in the 

literature, but our results are explained by the use of 55 GCM runs to assess possible changes in 

drought conditions, therefore investigating a much wider range of possible futures than previous 

studies. 

Nevertheless, and in agreement with the publish literature (Forzieri et al., 2014; IPCC, 2013), the 

worse changes in drought conditions are projected for cities in Southern Europe, for all scenarios. For 

the higher impact scenario, some cities in Southern Europe in any given month have greater than 70% 

probability of being in an unprecedented drought and droughts can be up to 14 times worse than the 

worse historical drought. Even in the low impact scenario, the South of Iberia can see droughts that are 

up to 2.5 times worse than the worse historical drought (see Figure 16). 
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Figure 16: Probability for any given month in the future being above the historical maximum 

DSI-12 (left) and maximum DSI-12 change factor – future maximum DSI-12 divided by 

historical maximum DSI-12 (right). Both shown for a low (10th percentile) impact scenario 

(top), a medium (50th percentile) impact scenario (middle) and a high (90th percentile) impact 

scenario (bottom) for each European city. The historical period is 1951-2000 and the future 

period is 2051-2100. 
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2.6 Pluvial flood hazard 

2.6.1 Introduction 

Pluvial flooding is caused by intense rainfall above the capacity of the urban drainage system and is 

normally studied using flood models that can provide depth and velocity of surface water associated 

with rainfall events of specified severity (Glenis et al., 2013). 

There are significant challenges associated with the assessment of future changes in pluvial flooding in 

all European cities. The first is the restricted availability of observed hourly rainfall records which, 

coupled with the spatial variability of intense rainfall regimes, hinders the definition of historical 

intense rainfall standards for each city. The second is the inability of climate models, run at standard 

resolution, to simulate intense hourly rainfall for present climates, which in turn means that credible 

future projections of changes in extreme rainfall are also not possible. Lastly, it is necessary to run a 

detailed, high resolution hydrodynamic model for each city in order to quantify which areas will flood 

for different rainfall events.  

From all those challenges, the inability to simulate extreme rainfall by climate models is the one 

making it impossible to apply a similar methodology to the other impacts in this report. Both GCMs 

and RCMs simulate precipitation that is too frequent,  and hourly events that are not intense enough, 

which can be ascribed to the inadequate representation of clouds, moist convection, and topography 

(Ban et al., 2014). The spatial resolution of conventional climate models is too coarse to allow for 

convective processes to be resolved, instead it has to be parametrized as a sub-grid process leading to 

an inability to represent extreme hourly precipitation (Ban et al., 2015). However, simulations with 

very high-resolution convection permitting models have been run recently, where convective 

processes are based on their governing dynamical equations without the need for parametrization. 

These “convection-permitting” models, more commonly used for nuerical weather prediction, resolve 

large storms and mesoscale convection but are still not able to represent convective plumes and small 

showers (Kendon et al., 2014). Due to their high demand on computational resources (Prein et al., 

2015), these models are only run for short periods and for small areas. To run global models at 

convection permitting resolutions is so computationally expensive that, at the moment, those 

simulations are only run for a maximum of a month and it might take one or two decades to do long-

term simulations with these models (Prein et al., 2015). Therefore these simulations are normally run 

as limited area simulations with boundary conditions provided by a GCM, or by reanalysis data (Prein 

et al., 2015). 

Comparing a 12km convection-parametrizing model with a 2.2 km convection-permiting model 

for the Alpine region, Ban et al. (2014) found large differences in the simulation of hourly 

rainfall. While both models simulated reasonably well the frequency-intensity distribution of 

daily precipitation, for hourly precipitation the coarser model underestimated the frequency of 

extreme events. However,  the 2.2km model simulated frequency-intensity distribution similar 

to the observed. Looking at future projections (2081-2090, using 1991–2000 as the control 

period) under RCP8.5 (Ban et al., 2015),  intense hourly rainfall is projected to become more 

intense (3 to 6% increase in the 99.9th percentile) and more frequent (with an increase around 

40% for intensities above 20mm/h).  

Kendon et al. (2014) ran 1.5km and 12km climate models for southern UK for 1996-2009 and 

for 13 years in the 2100s for RCP8.5. The coarser model significantly underestimates  heavy 

summer rainfall, while the 1.5km model gives a better representation of hourly rainfall but with 

a tendency for heavy rainfall to be too intense. For winter, both models show future increases in 

heavy rainfall (defined as the mean of the upper 5% of wet values) of around 40%. In summer, 

only the 1.5km model shows increases in intensity of extreme rainfall, which were around 36%. 
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The model projects fewer rain days in the future but a higher frequency of extreme events 

(above 28mm/h which corresponds to the 99.999th percentile of wet hours for the present-day). 

These studies are at best indicative, as the simulations are for limited area regions and for time-

periods too short to provide a large enough sample of events for a reliable frequency analysis or 

to be robust to the possible effects of natural variability). Furthermore,  they are single 

representations of one GCM downscaled using one model and therefore there is no information 

about the uncertainty associated with these future projections whihc is usually addressed by 

running an enesemble of climate models with different formulations.  

 

2.6.2 Methodology 

2.6.2.1 Historical intense hourly rainfall 

For the pluvial flooding analysis, the first step was to compile sub-daily rainfall datasets or IDF 

(Intensity-Duration-Frequency) curves for as many sites in Europe as possible (see section 2.3). 

Unfortunately these data are not readily available and we only were able to collate data for 46 gauges, 

many of them with short records, which limits the reliability of our methods.   

After the compilation, hourly levels of rainfall for a 10 year return period were calculated for all 

available time-series. Considering the data available, hourly annual maxima were used instead of 

peaks-over-threshold. Following normal practice,a GEV distribution was assumed for all gauges and 

confidence intervals (95%)  were calculated. A discretization correction factor (1.16) was applied to 

those data calculated from fixed window hourly time-series.  

 

Figure 17: Number of years available for each gauge (left) and distribution of 10 year return 

period hourly rainfall (right). 

 

Figure 17 shows the resulting hourly rainfall levels for a 10 year return period, as well as the number 

of years available per gauge for this calculation. Figure 18 shows the spatial distribution of the 

calculated hourly rainfall levels for the 10 year return period. It is clear that the gauge in Corsica 
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(Bastia) has a rainfall level for a 10 year return period (72 mm/h) well above all other gauges used in 

this study which vary between 14mm/h and 54mm/h.   

 

 

Figure 18: Map of Europe with the hourly rainfall for a 10 year return period for all 

available gauges. Return periods were calculated assuming a GEV distribution for all 

gauges. The number of years available for each gauge varied between 6 and 63 (median = 17 

years).  

 

Numerous regression models for hourly 10-year rainfall were explored using a variety of 

climatological variables from E-obs as well as elevation and location as predictor variables. 

Besides the usual statistical measures of goodness of fit (R-squared, correlation between 

variables, predictive power of the used variables, and statistics of the residuals) the robustness 

of the regression across possible ranges of values of predictors was carefully considered, since 

the model must be applied to all Europe. Therefore, lower R-squared values and higher errors at 

each gauge were preferred to overfitting the regression to the available gauge data, which could 

result in unrealistic hourly rainfall for the 10 year return period when the regression is applied 

throughout Europe. 

The following regression equation was selected:  

𝑅1ℎ,10𝑦𝑟 =  68.51252 + 1.01388𝑅𝑚𝑒𝑑 − 0.16297𝑅𝑚𝑎𝑥 − 0.94541Latitude − 1.21321𝑇𝑚𝑖𝑛 

With: 

𝑅1ℎ,10𝑦𝑟 – hourly rainfall for a 10 year return 

period 

𝑅𝑚𝑒𝑑 – median of the annual maximum 

daily rainfall 

𝑅𝑚𝑎𝑥 – Maximum monthly mean rainfall 

𝑇𝑚𝑖𝑛– minimum monthly maximum 

temperature 

 

 

All the predictors were significant (all p-values bellow 0.006) and had low variance inflation 

factors (all bellow 4.4) meaning that multicolinearity was low (i.e. the variables of the 

regression are not correlated); therefore the model was considered robust. However, the R-
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squared value was not very high (0.57) and the Bastia site has a large residual: 24.6mm. Maps 

of the residuals for all gauges are shown in Figure 19. Figure 20 shows the observed vs 

estimated 𝑅1ℎ,10𝑦𝑟 for all gauges with the confidence intervals for the observed values. Here it 

can be seen that the confidence intervals for Bastia (green square on the top-right corner of the 

plot) are very large (the 10 year return period can be between 16mm/h and 128mm/h) due to the 

high interannual variability of the Mediterranean climate and the low record length (only 10 

years of data) available. 

 

 

Figure 19: Maps of Europe showing the residuals of the linear regressions used to estimate 

the hourly rainfall for a 10 year return period. The plot in the left shows absolute residuals 

(in millimetres) while the plot on the right shows relative residuals (calculated as a 

percentage of the observed rainfall level for a 10 year return period).  
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Figure 20: Observed Vs estimated hourly rainfall for a 10 year return period for all gauges. When possible, 

the observed values are shown with their respective 0.05 confidence interval (horizontal lines). For four 

gauges (Athens, Barcelona, Firenze and Malaga) confidence intervals are not available because the time-

series for these gauges were not available and the rainfall levels for the 10 years return period were retrieved 

from the literature. Predictive intervals (0.95 level) are also shown (vertical lines). The diagonal dotted line 

shows the 1:1 line. 

 

 

 

The results of the linear regression for all Europe are shown on Figure 21 and were used to 

calculate hourly rainfall for a 10 year return period for all European cities, except the two 

Maltese cities because e-obs does not cover Malta since the resolution of the dataset is not 

compatible with the small size of the island. 
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Figure 21: Map of Europe showing the estimates from the regression model for hourly 

rainfall for a 10 year return period based on e-obs climatological data. The locations of the 

gauges used are shown as black dots. 

 

2.6.2.2 Future intense hourly rainfall 

As explained in the introduction of this chapter there are no Europe-wide future climate model 

simulations at convection-permitting scales, therefore there are no reliable projections of future 

intense hourly rainfall for Europe. Also, the regression model developed for historical intense 

hourly rainfall for Europe is valid for the estimation of rainfall at any site, but there is no 

assurance that it would be valid for future climates when the range and inter-relationships of the 

predictor variables are likely to change.  

Therefore, the assessment of future changes in pluvial flooding can only be done using a 

sensitivity analysis. Change factors will be applied to the historical hourly rainfall for a 10 year 

return period. The choice of change factors is somewhat subjective and we considered several 

sources of information to inform this decision: 
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 The convection-permitting simulation of the Alps (1991–2000 and 2081–2090 , 

RCP8.5) showing intensity of heavy hourly rainfall (99.9
th
 percentile) increasing by 3% 

to 6% (Ban et al., 2015). 

 The convection-permitting simulation of southern UK (1996-2009 and 13 years in the 

2100s, RCP8.5) showing heavy rainfall (defined as the mean of the upper 5% of wet 

values) intensity increasing by around 40% in winter and 36% in summer (Kendon et 

al., 2014). 

 Change factors calculated for daily Rmed (median of the annual maximum 

daily rainfall) shown in Figure 22. Daily extreme rainfall values are more credibly 

simulated by climate models and are available for the historic period in the e-obs data 

set. On the other hand, they are only a partial predictor of hourly extreme rainfall 

values:    the correlation between daily Rmed and hourly rainfall for a 10 year return 

period (shown in Figure 23) is low (Pearson correlation of 0.5). The Rmed change 

factors are shown in Table 3.  

 
Low impact scenario 

(10th percentile) 

Medium impact scenario 

(50th percentile) 

High impact scenario 

(90th percentile) 

Minimum   0.78 Minimum   0.95 Minimum   1.07 

1st quartile 1.03 1st quartile 1.14 1st quartile 1.24 

Median  1.06 Median  1.16 Median  1.26 

Mean    1.04 Mean    1.14 Mean    1.26 

3rd quartile 1.08 3rd quartile 1.17 3rd quartile 1.29 

Maximum    1.13 Maximum    1.22 Maximum    1.36 

Table 3: Summary statistics for change factors calculated for Daily Rmed for each european 

city for three impact scenarios. 

 

 

Taking all the above information into consideration, the change factors chosen for the 

sensitivity analysis of future changes in pluvial flooding were 0.9, 1.2 and 1.5. This range is 

chosen so as to encompass the bulk of the likely range of changes. Note that a small decrease is 

considered possible within this range (0.9) and that there is no implication of any relatively 

greater probability in the middle of this range – rather, we consider this to be a uniform interval 

at this stage.  

 

Figure 22: Historical daily Rmed plotted against the hourly rainfall for a 10 year return period for all 

gauges, color by country. 
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Figure 23: Change factors for daily Rmed for a low (10th percentile) impact scenario (top-left), a medium 

(50th percentile) impact scenario (top-right) and a high (90th percentile) impact scenario (bottom) for each 

european city. 

 

 

2.6.2.3 Urban hydrodynamic model 

In parallel to the calculation of historical and future intense hourly rainfall, flood modelling has been 

performed for all 571 cities using the urban flood model CityCat (City Catchment Analysis Tool) and 

the 25m resolution DEM. Newcastle University has developed the City Catchment Analysis Tool 

(CityCAT) model which provides rapid simulation of urban hydrodynamics based on the solution of 

the shallow water equations using the method of finite volume with shock-capturing schemes 

(Godunov, 1959; Harten et al., 1983; van Leer, 1979). The Osher Riemann solver (Dumbser and Toro, 

2011; Osher and Solomon, 1982) was used to obtain a solution of the Riemann problem at the cell 

interfaces. Also, the MUSCL-Hancock finite-volume scheme (van Leer, 1984) was used to obtain a 

high resolution solution which is  second order accurate in space and time in the smooth regions. 

The CityCat model was deployed on the Microsoft Azure Cloud and a parameter sweep system 

previously developed (Glenis et al., 2013) was modified and used in order to simultaneously 

carry out simulations for 571 cities for the following hourly rainfall levels: 20mm/h, 30 mm/h, 
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40 mm/h, 50 mm/h, 60 mm/h, 70 mm/h, 80 mm/h, 100mm/h and 125 mm/h. With this approach 

the simulation time was reduced from around three months to just three to four days. As an 

example, the simulation result for Vienna for 70 mm/h event is shown in Figure 24.  

 

 

Figure 24: CityCat flood maps for Vienna using a 70mm/h storm. 

 

The use of a coarse DEM (25m) and the lack of information about buildings means that there is 

low confidence in the spatial resolution of the flooded areas. Nevertheless, the model captures 

the movement of the water influenced by the natural elevation of the terrain.  

The maximum water depth values for each rainfall event were calculated for all the grid cells in 

order to have a map of maximum flood depths for each city and each rainfall event. 

Subsequently, the percentage of city flooded for each event was calculated (plots shown in 

annex). For this, a threshold of 5cm of flood depth was considered to define the flooded area. 

This percentage was based only on the urban area (Urban Morphological Zones
3
 calculated 

based on CORINE) inside the “city region” defined in the Urban Audit dataset. This was a 

necessary step since some “city regions” are not appropriate for this type of analysis, some even 

include estuary areas as shown in Figure 25.  

                                                      

 

 
3 Urban Morphological zones 2000 (http://www.eea.europa.eu/data-and-maps/data/urban-morphological-zones-2000-2) defined as 

“set of urban areas laying less than 200m apart”. This European Environment Agency (EEA) dataset was build based on the 

urban land cover classes of the CORINE LAND COVER dataset. This dataset was used to define “city area” in the calculations 

of percentage of city flooded for the pluvial flooding analysis. 

http://www.eea.europa.eu/data-and-maps/data/urban-morphological-zones-2000-2
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Figure 25: Examples of different definitions of “city”. In black is the “city region” as defined 

in the Urban Audit dataset, in red are the Urban Morphological zones calculated based on 

CORINE. On the left several cities in the Amsterdam (NL002C) area are shown, the top-right 

shows Cagliari (IT027C) and the bottom right map shows Aveiro (PT008C).  

 

To calculate the possible future changes in percentage of city flooded the following steps were used 

for each city: 

1. Linear interpolation was performed between the modelled rainfall events and corresponding 

percentage of city flooded; 

2. For the historical hourly rainfall for 10 year return period the corresponding percentage of 

city flooded was calculated based on the above interpolation (see Figure 26); 

3. For the three different future hourly rainfall for 10 year return period (historical value 

multiplied by the three chosen change factors) the corresponding percentages of city flooded 

were calculated. 

4. Differences and change factors between the future and the historical percentages of city 

flooded were calculated. 
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Figure 26: Percentage of city flooded for historical hourly rainfall for a 10 year return 

period. These percentages are based on the rainfall event and the elevation map used for 

each city and do not have in consideration adaptation measures already implemented in these 

cities (like sewer systems) which will be different in different cities. 

 

 

 

2.6.3 Results 

The changes in the percentage of city flooded using 0.9, 1.2 and 1.5 change factors for hourly 

rainfall for 10 year return period are shown in Figure 27. The indicator used for the risk analysis 

will be the ratio (or change-factor) of the percentage of city flooded, i.e. future percentage of 

city flooded divided by historical percentage of city flooded.  

The changes in percentage of city flooded obviously follow the changes in the rainfall events 

and are therefore much bigger in the high impact scenario. However, since the elevation maps 

of each city are also taken into account, there is a wide spread of results in each scenario, 

particularly in the high impact scenario, that does not have a geographical pattern.  
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Figure 27: Changes in the percentage of city flooded (calculated as a ratio or change-factor: 

future percentage of city flooded divided by historical percentage of city flooded) shown for 

each European city. The changes are calculated assuming a 0.9, 1.2 and 1.5 change factors 

for hourly rainfall for 10 year return period respectively as low (top-left), a medium (top-

right) and a high (bottom) impact scenarios. 

  

 

 

Figure 28 shows that, for most cities, under the high impact scenario (and to a lesser extent in 

the medium scenario), the changes in terms of percentage of city flooded are smaller than the 

change factors that originated them. The opposite is true for the low impact scenario, which was 

done with a 0.9 rainfall change factor, but has a median percentage of city flooded change factor 

of 0.93. For the medium and high impact scenarios (rainfall change factors of 1.2 and 1.5) the 

median percentages of city flooded change factor are 1.14 and 1.34. Nevertheless, the 

differences between cities are quite large, especially for the high impact scenario where the 

minimum change factor is 1.18 and the maximum is 1.75, which means that the change in 

percentage of city flooded varies between an 18% to a 75% increase in area flooded for a 50% 

increase in rainfall.  
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Figure 28: Violin plots (kernel density plots superimposed on boxplots, with median value 

shown in white) of ratio (or change factors) of percentage of city flooded (future percentage 

of city flooded divided by historical percentage of city flooded) for all European cities for a 

low (rainfall change factor=0.9), a medium (rainfall change factor=1.2) and a high (rainfall 

change factor=1.5) impact scenario. The rainfall (hourly rainfall for 10 year return period) 

change factors are also shown as dotted red lines. 
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2.7 Fluvial flood hazard 

2.7.1 Introduction 

Fluvial (or river) flooding affects numerous European cities, but data regarding river discharges 

are seldom available for city areas. The approach taken here is therefore to implement a regional 

flood frequency analysis: specifically, regression relations between flood characteristics and 

catchment and/or climatic characteristics are derived to ensure a consistent approach is applied 

to all EU cities. 

A major benefit of regression based analyses is that there are no a priori assumptions about the 

interacting processes. All available data can be exploited to understand relationships with the 

variable of interest. It is also possible to derive some insight into individual correlations and 

interactions by exploring the residual plots against selected predictors. However, the linear 

assumptions do not appropriately represent the hydrological processes, and there are usually 

inter-site correlations. Resolving the issues related to nonlinearities usually involve data 

transformations, technique modification (from Ordinary Least Squares to Weighted Least 

Squares or Generalised Least Squares) and model structure redefinitions, thus voiding the 

earlier claim of minimal assumptions (Oudin et al., 2008). 

Regression methods generally do not accurately estimate the flood quantiles due to the 

difficulty of relating runoff to a single/fixed set of catchment descriptors (Salinas et al., 2013). 

Nevertheless, regression studies carried out on clustered selections within the study region tend 

to perform better than global regressions (Salinas et al., 2013). 

Smith et al. (2015) performed a regional flood frequency analysis at global scale using 703 

discharge gauges from the Global Runoff Data Centre (GRDC) and a global annual average 

rainfall dataset from World-Clim (Hijmans et al., 2005), besides catchment area and slope. 

Regressions were used to calculate the mean annual flood and they concluded that the best 

regressions used just catchment area and annual average rainfall as estimators. Different 

exponents for the two estimators were calculated for different climatic areas based on the 

Koppen-Geiger classification, where Europe is mainly constituted by temperate and continental 

classes. The regressions performed better for temperate, tropical and polar regions than the drier 

continental and arid regions. Also, means and medians of the relative mean square errors were 

substantially different, demonstrating the strong effect of a small number of poorly performing 

gauges. The authors hypothesise that this might be due to basins with extensive water 

abstraction. The mean errors for the mean annual flood regression applied to temperate climate 

was 77% (median of 37%), for continental climate was 151% (44% median). The authors 

conclude that there is “some predictive skill” for the majority of the stations whilst pointing out 

that this methodology is not appropriate to provide estimates of detailed localized discharge. 

An alternative methodology is to model the whole of Europe with a hydrological model, but this 

requires vast amounts of data, which is not readily easily accessible on a European scale (e.g. 

aquifer characteristics). Furthermore, both running and calibrating such a model would be very 

time consuming. Nonetheless, some studies of future flooding in Europe have tried to use 

simple hydrological or hydraulic models, e.g. Lisflood (van der Knijff et al., 2010). This model 

requires inputs representing precipitation, air temperature, potential evapotranspiration, and 

evaporation from open water bodies and bare soil surfaces and has been run for the whole 

Europe at 5km resolution (Rojas et al., 2012). The model has been calibrated with data from 

258 European catchments for at least four years of observed discharge with a focus on the 

timing and magnitude of flood events. However, results for daily discharge were far from ideal, 
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with 70% of the percentage bias values between ±25%, 23% of the values below that interval 

(underestimation of discharges) and 7% above (overestimation of discharges). 

Roudier et al. (2016) also used pan-European hydrological models for future flooding 

assessment, in this case Lisflood, E-Hype and VIC. The models were run with bias corrected 

climate variables (5 climate model runs bias corrected through quantile mapping using E-OBS). 

The median of the 100 year discharge level (Q100) modelled was assessed against the Q100 

calculated from 428 gauges (from several sources). Root Mean Square Errors were lower for 

Lisflood (961 m
3
/s) than E-Hype (1124m

3
/s) or VIC (1279m

3
/s) but these differences in 

performance might be partly explained by different calibration methodologies and datasets. 

Errors in simulation of pan-European historical discharges seem therefore to always be 

substantial whether regression methodologies or hydrological models are used.  

Regarding the projection of future discharges, a few recent pan-European studies exist;  

Dankers and Feyen (2009) studied future changes in flood hazard in Europe for 2071-2100 

relative to 1961-1990 using two GCMs (one with three different sets of initial conditions), two 

RCMs and two emission scenarios (SRES A2 and B2) to run Lisflood. They found that at 

regional level the choice of which combination of outputs was used resulted in large differences 

in the Q100, sometimes even without agreement in the sign of the change. However, they also 

found a decrease in extreme river discharge in North-eastern Europe common to all 

experiments. The extent of the area where that decrease was found varied with different 

experiments due to differences in the reduction of the snow pack (and therefore peak runoff 

during snowmelt) and how it was compensated by the increase of winter precipitation. The 

authors therefore questioned if their results could be explained by trying to estimate 100 year 

return levels from 30 year time-series of annual maximum discharges. Elsewhere in Europe, the 

different experiments showed mixed patterns partially due to a large internal variability in the 

climate model runs.   

Rojas et al.(2012) assessed future flood hazard in Europe using 12 climate outputs of the 

ENSEMBLES project (SRES A1B scenario) for 1961-2100 corrected trough quantile-mapping 

(using the E-OBS dataset) to run Lisflood. The maximum annual discharges for the control 

period (1961-1990) showed reasonable results but lower discharges/smaller catchments tended 

to have bigger errors, extreme discharges tended to be underestimated and a small number of 

stations showed big discrepancies, probably partly due to the underestimation of the 

anthropogenic influence on high flows. Lisflood run with different future climate model 

projections showed very different estimates of changes in Q100, sometimes even without 

agreement in the sign of the change, especially in Scandinavia and North-eastern Europe. 

However, most simulations projected Q100 increases in western and central Europe, northern 

Italy, the British Isles and the upper basins of the rivers Rhine and Elbe. While decreases in 

Q100 are projected by most simulations in parts of Iberia, southern Italy, south-eastern Europe, 

north-eastern Germany, Poland, the Baltic region and some areas in Scandinavia. However, 

many of these changes were not statistically significant.  

Alfieri et al. (2015) looked at projected relative changes in European floods between 1971-2100 

using seven scenarios (a combination of 3GCMs and 4 RMCs) from EURO-CORDEX 

(RCP8.5). They used uncorrected (raw) climate model variables (temperature, precipitation, air 

pressure, specific humidity, wind speeds and downwelling shortwave radiation) to run the 

hydrological model Lisflood (at 5km spatial resolution and daily time step and modelled 22 

European basins with area above 50 000 km
2
) under the argument that bias correction does not 

improve the representation of the extremes and that the spatial resolution of the observed 

datasets is coarser than the EURO-CORDEX outputs. However, when using a physical based 

hydrological model, mean values are important in order to get a good representation of melting, 
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infiltration and evaporation processes and the choice of using uncorrected climatological 

variables might therefore induce strong biases in the discharges of these big basins.  

Nevertheless, Alfieri et al. (2015) found that by 2100 both mean discharges and annual 

precipitation are projected to increase in north-eastern Europe and decrease in southern Europe 

(with no agreement in central Europe). In the seven scenarios used, the rainfall changes are in-

line with the CMIP5 projections, although with added spatial detail. However, despite daily 

maximum rainfall being expected to increase in most of Europe (with higher and more 

significant increase when moving north and east), peak discharges show a different behaviour 

due to the effects of temperature increase affecting both evapotranspiration and snow 

accumulation. Mean annual daily peak flow is expected to decrease in southern Spain, 

Scandinavia and the Baltic countries and increase in central Europe and the UK. However, the 

uncertainty is large in most basins studied with trends showing a discontinuous pattern and with 

some showing good and other a lack of agreement between climate models. 

Roudier et al. (2016) used 11 members of CORDEX (4 GCMs, 4 RCMs and three emission 

scenarios) and compared the 1971-2000 with a 30 year interval where the driving GCM reached 

+2ºC. Three pan-European hydrological models (Lisflood, E-Hype and VIC) were run with bias 

corrected climate variables (quantile mapping using E-OBS). Changes in river flooding were 

assess by calculating the magnitudes of 1 in 10 (Q10) and 1 in 100 year (Q100) flood using the 

daily maximum discharges of the 30 year periods and fitting a GEV distribution (using L-

moments). For Q10, south of 60°N the median of the 33 projections range from no significant 

change to a significant 40% increase in magnitude. The Q100 showed the same type of 

behaviour but with more areas showing strong increases. North of 60°N there is more 

heterogeneity with large areas of no significant change, some increases in flooding in costal 

Scandinavian areas (rain-fed floods) and strong decreases in parts of Finland, NW Russia and 

parts of Northern Sweden due to decreases in snowpack. However, when looking at the 25
th
 and 

the 75
th
 percentile for the Q10 projections instead of just the median of the 33 projections, there 

are vast areas in Europe where there isn’t an agreement even on the sign of change. This 

encompasses the majority of Scandinavia and Northeast Europe as well as the south of Iberia 

and other spotted areas throughout the continent.  

There is a very wide range of projections for future changes in European river flooding with 

disagreement between different studies, or even within studies that used an ensemble of climate 

projections. Therefore, in this report the emphasis is on looking at the whole ensemble of 

climate projections from CMIP5 (54 climate model runs) to assess the range of possible future 

changes. Since this would be extremely time-consuming to do using a physically based 

hydrological model, a regression based methodology was applied. 

 

2.7.2 Methodology 

The Global Runoff Data Centre (GRDC) discharge records in Europe comprising at least 9 

years of daily data between 1950 and 2013 and no missing data were initially selected. For each 

gauge an upstream basin was delineated in GIS in order to obtain its area and climatology. For 

this purpose the Hydro1K dataset was used
4
. First, the flow accumulation raster was used to 

correct the position of the GRDC gauges. This was necessary for two reasons:  (i) there can be 

                                                      

 

 
4 USGS (2011) Hydro1K Europe. Available at: 
http://eros.usgs.gov/#/Find_Data/Products_and_Data_Available/gtopo30/hydro/europe (Accessed: 09-02-2011). 

http://eros.usgs.gov/#/Find_Data/Products_and_Data_Available/gtopo30/hydro/europe
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errors with the coordinates of each gauge, and (ii) the hydro1K dataset has a resolution of 1km, 

therefore the location of the rivers is not always correct (especially in flat areas). This was done 

manually for all 225 gauges and involved the following steps: 

1. Check if the gauge coordinates lies on a river, i.e. high flow accumulation zone in the 

hydro1k raster; 

2. If not, and one river exists in the vicinity (<2km), adjust the gauge coordinates to lie on the 

river.  

3. If more than one river exits in the vicinity, or if the river is further than 2km, further 

investigation was needed. The name of the river, from the GRDC metadata, and the 

coordinates of the gauge were used, with Google Maps to pinpoint the location of the gauge. 

With the exception of two cases, gauges were only moved when the distance was less than 

3km. Also, when it was not obvious where the gauge should be moved to, it remained in its 

original place but was not excluded from the analysis.  

The 225 basins were then delineated using a python script, the flow direction raster from 

hydro1K and the “corrected” location of the gauges as inputs. To assess the magnitude of the 

errors, the area of the calculated basins was compared with the area supplied in the GRDC 

metadata for each gauge (see Figure 29 and Figure 30). The errors were calculated as: 

 

Error = (Acalculated - Ametadata) / Ametadata * 100 

 

 

Figure 29: Histograms (blue) and PDFs (pink) of the areas of the basins of the 225 GRDC 

discharge gauges. The left plot shows the calculated areas using the methodology outline in 

the text. On the right are the areas of the same basins taken from the GRDC metadata. 
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Figure 30: Histograms of the errors in basins’ areas for 224 GRDC basins, the basin with the 

biggest error (44 736% is not shown because otherwise the plot would become illegible). 

 

Basins with an area error over 25% were discarded. After this process, 114 catchments 

remained.  

In Hydro1K the definition of a river was a water course with at least 1000 km
2
 catchment area. 

We chose a smaller threshold – 500km
2
 of catchment area – in order to keep a large number of 

basins, which is essential for a meaningful regression analysis. Nevertheless, the biggest basin 

in the dataset (gauge 6742900 in the Danube) which has an area of 807 000km
2
 was discarded, 

since none of the European cities studied has a basin that big.  

The 10 year return levels of annual maximum daily discharge (Q10) were calculated for all 

remaining basins. Following standard practice, a GEV distribution was fitted for all gauges and 

confidence intervals (95%) were calculated. Specific Q10 were also calculated by dividing Q10 

by basin area, which gives a measure of the intensity of flow per unit area. 

The basin shapefiles were used to subset the E-OBS dataset in order to extract basin average 

annual and monthly values for: 

 precipitation,  

 maximum, mean and minimum temperature, and  

 a simplified measure of snow pack, calculated as the amount of mean monthly precipitation 

that falls when the minimum monthly temperature is negative for each E-OBS cell. 

Potential evapotranspiration (PET) was also calculated for each basin using the Thornthwaite 

equation based on latitude and the basin mean monthly temperature. For simplicity, since the 

formula is not sensitive to small latitude changes, the latitude of the gauge was used instead of 

the latitude of the centroid of the basin.Figure 31and Figure 32 show some of the variables 

calculated.  
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Figure 31: GRDC data exploratory plots 
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Figure 32: GRDC data exploratory maps 

 

 

There is an obvious outlier (top-left point in the top plots of Figure 31 and top Finnish gauge in 

Figure 32) which has a specific Q10 of 1.2 m
3
/s/km

2
 despite having low annual precipitation 

(412mm) and an average annual PET (514mm). According to the metadata provided by GRDC, 

this gauge (6830510) should be in the Tana River which, at this location, makes the border 

between Finland and Norway. However, looking at Figure 33 the location of the gauge does not 
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seem to be correct since it is in a contributory stream of the Tana, instead of the Tana itself. 

Therefore this gauge was rejected. 

 

 

Figure 33: Elevation map with GRDC gauge number 6830510. 

 

A European map with the basins used and rejected is shown inFigure 34. At the end of the 

selection process 82 basins remained to be used for the Q10 regression. The final selection of 

basins, although not uniform across Europe, still represents very different climates and a wide 

range of basin sizes. 

Various regression models for specific Q10 (with and without transformations such as 

normalization and using logarithms) were trialled using monthly, seasonal and annual basin 

values of precipitation, PET, snow pack and rainfall (precipitation minus snow-pack). Specific 

Q10, was used instead of Q10 due to the dominance of basin area in the Q10 values as it 

dominates the regression and hides the contribution of the other variables. The dominance of 

basin area is aggravated by the large range of areas in the dataset (from 55 km
2
 to 807 000 km

2
, 

with a median of 2 535 km
2
). 

Besides the usual statistical measures of goodness of fit (R-squared, correlation between 

variables, predictive power of the used variables, and statistics of the residuals) the robustness 

of the regression across possible ranges of values of predictors was carefully considered, since 

the model must be applied to all Europe. Therefore, lower R-squared values and higher errors at 

each gauge were preferred to overfitting the regression to the available data. The following 

regression equation was selected:  

𝑄10 =  −2.424840 + 0.822813Log(AREA) + 0.015167𝑃𝑚𝑎𝑥 

With: 

Q10 – 10 year return period of annual 

maximum daily discharge 

AREA – basin area 

𝑃𝑚𝑎𝑥  – Maximum monthly mean precipitation 
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Figure 34: Map with all GRDC gauges’ basins. 

 

The adjusted R-squared for the regression was 0.84. Both predictors were significant (p-values 

bellow 1.41
-13

) and had low variance inflation factors (1.05) meaning that multicollinearity was 

low (i.e. the variables of the regression are not correlated); therefore the model was considered 

robust. Absolute and relative errors are shown in Figure 35 and Figure 36. The biggest absolute 

errors correspond to rivers with very high discharge and do not correspond to big relative errors. 

The biggest relative error (280%), which is an outlier, is from the river Notec in Poland (GRDC 

gauge number 6457200).  
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Figure 35: Maps of relative (left) and absolute (right) errors for the Q10 regression. 

 

 

Figure 36: Maps of relative (left) and absolute (right) errors for the Q10 regression. 

 

Figure 37 shows the observed vs estimated Q10 for all basins. The two Romanian basins of the 

Danube (top-right circles) stand out for their large discharge and large absolute error (despite 

the fact that the observed value is still within the predictive interval at 0.95 level). However, as 

mentioned before, they have small relative errors. The absolute errors can nevertheless be 

substantial and the prediction intervals for large discharges become very wide, meaning that the 

uncertainty in these estimates is high. 
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Figure 37: Observed Vs estimated Q10 for all basins. The observed values are shown with 

their respective 0.05 confidence interval (horizontal lines). Predictive intervals (0.95 level) 

are also shown (vertical lines). The diagonal dotted line shows the 1:1 line. 

 

The results of the linear regression were used to calculate Q10 for rivers flowing through 

European cities. To do so, the maximum flow accumulation point inside each city (with a 1km 

buffer) was calculated using an R routine. Those points were than used to delineate the 

correspondent 571 basins using a python script with the flow direction raster from hydro1K (as 

done for the GRDC gauges). The resulting basins are shown in Figure 38. The calculated 

regression was than applied to every basin with more than 500km
2
 in order to calculate Q10 for 

rivers flowing through European cities. Change factors for maximum monthly mean 

precipitation for each basin from the 54 climate model runs were than applied to the E-OBS 

precipitation values and the future Q10 were calculated using the same regression. The changes 

in discharge are presented as ratios.  
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Figure 38: All 571 cities (red dots) with their respective basins. 

 

 

 

 

 

2.7.3 Results 

For the low impact scenario most cities show either no change or a reduction in Q10, with 

increases in Q10 (up to 30%) mainly in the UK, Belgium, Netherlands and Scandinavian 

countries (see Figure 39). The medium scenario shows a north-south divide with increases in 

Q10 in the north, especially high in the UK and Scandinavia (up to a 70% increase in Q10) 

while most of the south of Europe still sees no change or decreases. Only in the high impact 

scenario does most of Europe show increases in Q10 (up to 230%) with the most affected areas 
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being the UK, Norway and the north west of Iberia. Most of the Mediterranean region still sees 

no increases in Q10.  

This wide range of possible future changes for most of Europe reflects the variety of results 

presented in previous pan-European studies that used climate ensembles to assess changes in 

flood severity (Alfieri et al., 2015; Dankers and Feyen, 2009; Rojas et al., 2012; Roudier et al., 

2016). Although it is important to note that our simple regression model does not account for 

the effects of snowpack reduction and therefore floods due to snowmelt are not accounted for. 

This means we cannot add to the discussion of the interplay between reductions of snowpack 

with simultaneous increases in rainfall which may be important for northern latitudes and high 

elevations.  

The British Isles are particularly at risk of an increase in river flooding with 43% of cities 

showing an increase in river flooding in the low impact scenario. In the medium scenario every 

city sees an increase in Q10 of at least 16% (27% in the high scenario). The mean change in 

these cities for the medium (high) scenario is 32% (55%) increase in Q10 and the maximum is 

70% (118%) increase. North west Iberia also shows a strong increase in Q10 (up to 125%) but 

only in the high scenario. The two Norwegian cities considered (Trondeheim and Kristiansand) 

also show increases in all scenarios and a large increase in the high scenario (50% and 132%) 

but since snowpack is not accounted for in our methodology this result may not translate into an 

increase in real Q10.  

Dankers and Feyen (2009) identified natural variability/internal variability in the climate 

models as the major cause of discrepancy of future changes in Q100 calculated using 30 year 

intervals. To minimize this source of uncertainty we used a longer period of analysis (50 year 

intervals) in order to characterize the climate better (not being as susceptible to decadal 

changes) and used a shorter return period for flood calculations (Q10 instead of Q100). Also, 

recalling that Dankers and Feyen (2009), Rojas et al. (2012), Alfieri et al. (2015) and Roudier et 

al. (2016) all find that for parts of Europe there is no agreement in the sign of projected change 

between scenarios, we argue that understanding the range of possible futures is more important 

than analysing the mean or median of a particular subset of possible futures.  
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Figure 39: Changes in Q10 (calculated as a ratio: future Q10 divided by historical Q10) for 

each European city. The changes are shown for a low (10th percentile) impact scenario (top-

left), a medium (50th percentile) impact scenario (top-right) and a high (90th percentile) 

impact scenario (bottom) for each European city. The changes are calculated between the 

historical period (1951-2000) and the future period (2051-2100). 
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2.8 Coastal flood hazard 

Broad scale coastal flood risk analysis is reported in detail by Boettle et al. (2016) as part of RAMSES 

WP1.2. The key stages of the method involved derivation of exposure and hazard functions by: 

 Processing elevation data to derive the relationship between storm surge level and inland flood 

extent. 

 Relate land cover to land use to identify residential, commercial, industrial and agricultural 

zones. 

 Identify a suite of land use damage functions  

 Integrate damage functions with the flood maps to build depth-damage relationships for each 

urban area. 

 Climate scenarios for sea level rise can be applied to increase the depth of flooding for given 

storm surge return periods. 
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2.9 Hazard scoring 

2.9.1 Overview of the data model 

As shown on previous sections, most of the hazard indicators used in the risk analysis are expressed 

as relative changes in intensities or probabilities of occurrence of specific climate –driven events. 

Uncertainty in climate projections has been managed by providing three alternative impact scenarios 

for each of these indicators: 

 Heatwave index: change in the percentage of heatwave days (i.e. difference between future 

and historical percentage of heatwave days); and changes in maximum temperature of 

heatwaves (i.e. difference between the maximum temperature felt during a heatwave in the 

future period and in the historical period). 

 Drought stress index: change in the probability for any given month in the future to be above 

the maximum historical DSI-12; and, the change factor of maximum drought, i.e., future 

maximum DSI-12 divided by historical maximum DSI-12. 

 Pluvial flood index: change in the percentage of city flooded using 0.9, 1.2 and 1.5 change 

factors for hourly rainfall for 10 year return period  (i.e. future percentage of city flooded 

divided by historical percentage of city flooded), generated using a sensitivity analysis 

 Fluvial flood index: change in the 10 year return period of annual maximum daily discharge 

(Q10). 

 

This was supplemented by one additional hazard index: 

 Intensity of the Urban Heat Island (UHI) effect based on 8-day averaged daily mean land 

surface temperature (LST, i.e. skin surface temperature) data during summer months (June-

August) 2006-2013. Data from MODIS (MOD11A2, MYD11A2) datasets (Zhou et al., 2013). 

This can be considered a compounding factor to changes in heatwave frequency. 

 

Code Description Threat5 Source 

Hazard indicators 

HWDAYSUNEWI 

Relative change on the percentage of days classified as 

heatwaves days between 1951-2000 and 2051-2100 for low, 

medium and high impact scenarios 

HW 
Newcastle 

University 

HWMAXUNEWI 

Change in the maximum daily maximum temperature 

between 1951-2000 and 2051-2100 (units: ºC) for low, 

medium and high impact scenarios 

HW 
Newcastle 

University 

UHIPIKI 

UHI intensity based on 8-day averaged daily mean land 

surface temperature (LST, i.e. skin surface temperature) 

data during summer months (June-August) 2006-2013. Data 

from MODIS (MOD11A2, MYD11A2) datasets (Zhou et 

al., 2013). 

HW PIK 

DSI12RCUNEWI 
Relative change on the DSI-12 indicator (2051-2100 over 

1951-2000) for low, medium and high impact scenarios 
DR 

Newcastle 

University 

                                                      

 

 
5  DR: Droughts 
 FLF: Fluvial Flooding 
 FLP: Pluvial Flooding 

 FLC: Coastal Flooding 

 HW: Heatwaves 
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DSI12PROBUNEWI 

Probability for any given month in the future to be above 

the maximum historical DSI-12 indicator (2051-2100 over 

1951-2000) for low, medium and high impact scenarios 

DR 
Newcastle 

University 

FLPUNEWI 

Changes in the percentage of city flooded using 0.9, 1.2 and 

1.5 change factors for hourly rainfall for 10 year return 

period  (i.e. future percentage of city flooded divided by 

historical percentage of city flooded) 

FLP 
Newcastle 

University 

FLFUNEWI 
Changes in the 10 year return period of annual maximum 

daily discharge (Q10) 
FLF 

Newcastle 

University 

Table 4: Hazard indicators included in the RAMSES data model. 

 

 

 

2.9.2 Generation of aggregated hazard indices 

When appropriate, the aggregation of the individual hazard indicators considered within each impact 

chain was performed basing on a multiplicative utility function – a so-called deprivation index –. This 

is an approach to data aggregation commonly used by previous indicator-based vulnerability 

assessments (Balica et al., 2009; Charlotte Vinchon et al., 2011; Füssel, 2009).  

In general terms, geometric aggregation of indicators into composed indexes is considered a better 

alternative to arithmetic aggregation because its outputs are more robust across different weighting, 

standardisation and normalisation methods commonly used for data pre-processing (El-Zein and 

Tonmoy, 2015; Merz et al., 2013; Tonmoy et al., 2014). Additionally, the multiplicative aggregation 

minimises compensability of scores more than the additive option (Guillaumont and Simonet, 2011; 

Nardo, M. et al., 2008; Nardo et al., 2005).  This is considered to be an important advantage of the 

geometric aggregation approach, considering that with the additive method a deficit in one dimension 

could be offset by a surplus of identical magnitude in another (El-Zein and Tonmoy, 2015; Nardo, M. 

et al., 2008). More complex geometric aggregation methods, such as the reversed geometric average 

(Guillaumont and Simonet, 2011) or the Condorcet approach based on pairwise comparisons (El-Zein 

and Tonmoy, 2015), can reduce compensability even further, but the use of these sophisticated 

methods increase the difficulty for communicating results. 

Hazard indices, H, are thus estimated for each impact chain using the following formula: 

𝐻𝑐𝑡 =  √ℎ𝑐1 × ℎ𝑐2 × … × ℎ𝑐𝐼
𝐼  (2.1) 

or, generically: 

𝐻𝑐𝑡 = ∏  ℎ𝑐𝑖
 1/𝐼𝐼

𝑖=1  (2.2) 

where 𝐻𝑐𝑡 = hazard score for city c under climate threat t; ℎ𝑐𝑖 = value of hazard factor i in city c; I = 

total number of hazard factors (i.e. indicators) considered. 

 

All hazard scores were standardised and re-scaled (𝐻𝑐𝑡
′ ) applying the methods described in Section 4.5, 

prior to aggregation with the exposure and vulnerability indices to calculate risks. Results for all EU 

Urban Audit cities are presented in Figure 40 to Figure 41. 
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The maps in Sections 2.9.3 - 2.9.4 all use the following legend: 

 

 

 

2.9.3 Combined heatwave hazard index 

 

Figure 40: Combined heatwave hazard index for the low (left), medium (centre) and high 

(right) impact scenarios. 

 

The heatwave hazard index shown in Figure 40 combine information on (1) the change in the 

percentage of heatwave days (i.e. difference between future and historical percentage of 

heatwave days); (2) the changes in maximum temperature of heatwaves (i.e. difference between 

the maximum temperature felt during a heatwave in the future period and in the historical 

period divided), and; (3) the Intensity of the Urban Heat Island (UHI) effect based on 8-day 

averaged daily mean land surface temperature during summer months. Whereas the 1
st
 and 2

nd
 

indices combined in the composed heatwave index are produced under climate change 

scenarios, the indicator on UHI intensity is derived from observed data. 

Interestingly, urban areas such as Milano, Monza, Grenoble, Paris, Bordeaux, London and Sofia 

show combined heatwave indexes that are persistently high across all scenarios. This is mostly 

related to the strong UHI effect in these areas. In turn, other cities from the southernmost cities 

from the Iberian Peninsula and some Mediterranean islands show low hazard scores across all 

scenarios. This is motivated by a comparatively inferior aggravation of the changes in 

maximum temperature of heatwaves across scenarios as well as by a much lower UHI effect, 

due to the arid context where these cities are located (e.g. in practical terms the absence of 

vegetation in the peri-urban area makes the UHI unperceivable in a number of cities located in 

the lower latitudes of the EU. Many of these cities even show a negative thermal gradient 

during the summer months, meaning that temperatures in the city centres are on average cooler 

that in the surrounding non-urbanised areas, as discussed in Section 5.1 below). 
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2.9.4 Combined drought hazard index 

   

Figure 41: Combined drought hazard index for the low (left), medium (centre), and high 

(right) impact scenarios.  

 

The drought hazard index shown in Figure 41 combines the scores for (1) the relative change on the 

DSI-12 indicator and (2) the probability for any given month in the future to be above the maximum 

historical DSI-12 indicator for low (left), medium (centre) and high (right) impact scenarios. Looking 

across scenarios, it is clear that drought hazard under climate change projections should be considered 

a priority in those cities located in the Mediterranean macro-region. This is particularly true if one 

considers that this is an area where the economic activity is highly dependent on water abstraction, 

both for irrigated agriculture as well as for tourism-related activities.  
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3 Climate change exposure assessment 
 

Simply put, assessing exposure to climate change at this scale of analysis entails determining the total 

amount of people and assets potentially threatened by a given climate change-driven hazard within 

each urban area. Relying on the hazard data produced on Section 2, this project has followed different 

analytical choices to derive exposure information, as described below. 

 

 

3.1 Data model 

The exposure indicators used in this research aim to quantify as far as possible the total amount of 

population or assets that could be potentially affected by the climate impacts driven or intensified by 

climate change. In some cases the threats considered in this study show a spatially explicit distribution 

within cities (e.g. flooding), whereas in other cases the spatial variability at this scale of analysis is 

null or negligible (e.g. heatwaves and droughts). In the latter situation indicators such as the total 

population and assets included within cities have been used as exposure proxies. In the former 

situation, three alternative data scenarios have been faced: (1) whenever spatially explicit information 

on hazard distribution was available (e.g. coastal flooding), an estimation of the area potentially 

affected within each city was produced basing on GIS overlays (Boettle et al., 2016); (3) whenever the 

information allowed to derive some spatial data, but these were not considered to have enough quality 

for a detailed geographically-explicit assessment (e.g. pluvial flooding), it was assumed that 

population and assets are evenly distributed over the urban area as a preliminary estimate; (3) 

whenever spatially explicit information for hazards was not available (e.g. fluvial flooding), no 

exposure indicator was considered in the comparative evaluation of risks. 

Table 5 lists the exposure indicators that have been considered within our risk analysis: 

 

Exposure indicators 

Code Description Threat6 Source 

DE1001V 
Population on the 1st of January (last figure available 2004 

to 2013), total 
HW, DR Urban Audit 

SA1001 Number of conventional dwellings HW, DR Urban Audit 

EC2021V All companies DR Urban Audit 

PEOFLPTECI 

Estimated additional population potentially exposed to 

flooding using 0.9, 1.2 and 1.5 change factors for hourly 

rainfall for 10 year return period 

FLP 

Tecnalia R&D basing 

on data provided by 

Newcastle University 

and Urban Audit 

COFLPIKI 

Coastal flooding. Percentage of the city cluster potentially 

flooded due to a 100 year coastal storm surge event (Boettle 

et al., 2016). 

FLC 

PIK - Postdam 

Institute for Climate 

Impact Research 

Table 5: Exposure indicators included in the RAMSES data model. 

                                                      

 

 
6  DR: Droughts 
 FLF: Fluvial Flooding 
 FLP: Pluvial Flooding 

 FLC: Coastal Flooding 

 HW: Heatwaves 
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3.2 Exposure scoring 

The exposure indices, E, are estimated for each impact chain using the following formula: 

𝐸𝑐𝑡 =  √𝑒𝑐1 × 𝑒𝑐2 × … × 𝑒𝑐𝐽
𝐽  (3.1) 

or, generically: 

𝐸𝑐𝑡 = ∏  𝑒𝑐𝑗
 1/𝐽𝐽

𝑗=1  (3.2) 

where 𝐸𝑐𝑡 = exposure score for city c under climate threat t; 𝑒𝑐𝑗 = value of exposure factor j in city c; J 

= total number of exposure factors (i.e. indicators) considered;  

 

All exposure scores were subsequently standardised and re-scaled (𝐸𝑐𝑡
′ ) prior to aggregation with the 

hazard and vulnerability indices to calculate risks, as shown in Section 4.5 below. Results for all EU 

Urban Audit cities are presented in Figure 42 to Figure 44.  

The maps shown in Figure 42, Figure 43 and Figure 44 (right) all use the following legend: 

 

 

3.2.1 Combined exposure indices to heatwaves and droughts 

Figure 42 includes a cartographic representation of the combined exposure indices to heatwaves (left) 

and droughts (right).  

 

  

Figure 42: Combined exposure indices to heatwaves (left) and droughts (right). 
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Given the spatial level of our analysis, and considering the scale at which heatwaves express and 

propagate, exposure to this hazard is considered to equally affect all population and assets within 

cities, without performing further evaluations based on spatially-explicit modelling tools. Accordingly, 

the heatwave exposure index represented in the map to the left in Figure 42 combines information on 

the demographic size of cities – total population – and assets – number of conventional dwellings –. 

Both indicators are combined in a composite index illustrating the relative position of European cities 

in terms of their potential exposure to heatwaves. 

The map to the right in Figure 42 provides a very similar indicator for droughts. In this case the 

exposure index represents a tri-dimensional construct including the number of companies within each 

city, alongside the total population and conventional dwellings. As claimed on Section 3.1 above, the 

inclusion of the economic dimension is related to the nature of this impact chain. This is because it is 

expected that the growing drought episodes expected during this century in many parts of Europe will 

affect urban comfort to the same extent that they will disturb economic activity within cities (Knutson 

et al., 1998; Stefano et al., 2015).  

Essentially, both heatwave and exposure indices show a similar spatial distribution pattern across the 

EU. Larger urban areas are more exposed to both hazards, as they host more population and more 

assets potentially affected by these phenomena. This seems an obvious consequence of the very nature 

of both hazards and the impact transfer mechanisms that operate within these impact chains. This 

characteristic should nonetheless be accepted and considered within a pan-European policy framework 

as a relevant criterion to set priorities and allocate resources.  

 

 

3.2.2 Exposure index to pluvial floods 

The standardised exposure index to pluvial floods shown in Figure 43 is based on an estimate on the 

additional population potentially exposed to flooding using 0.9 (left), 1.2 (medium) and 1.5 (right) 

change factors for hourly rainfall for 10 year return period.  

 

 

Figure 43: Exposure index to pluvial floods for the low (left), medium (centre), and high 

(right) impact scenarios.  

 

The fluvial floods exposure index was derived by, firstly, calculating the extra area potentially 

affected by pluvial floods assuming a homogenous distribution of impacts over the entire urban area – 
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i.e. relative changes were multiplied by the total area of cities to calculate the extra area potentially 

flooded within each city – and, secondly, calculating the extra population affected based on average 

population densities – thus assuming a homogeneous distribution of population within the entire city 

area –. These are bold assumptions that do not preclude the utilization of the standardized index as a 

relative indicator of urban exposure to pluvial floods within a comparative risk analysis, if one 

considers that the bias introduced by the assumptions are equally applied to all the observations. 

Similarly – and coherently – with the structural distribution of pluvial flood hazards shown in Figure 

27, the standardised exposure index presented in Figure 43 shows a rather stable and generalised 

increase of urban exposure to pluvial floods under the three low (left), medium (centre) and high 

(right) impact scenarios. Most cities in the high impact scenario (right) are classified in the upper 

quartile (>0.75). Reversely, virtually all cities in the low impact scenario (left) are classified in the 

lower quartile (<0.25). 

Thus the most expressive distribution of cities in terms of potential exposure to pluvial floods can be 

found within the medium impact scenario (Figure 43, centre). Although a higher variability can be 

easily recognised under this scenario, this variability does not seem to follow a well-defined spatial 

pattern. Broadly speaking, it could be claimed that drawing a diagonal line across Europe from the 

British Isles to the Strait of Sicily, those cities located to the North of this line show comparatively 

higher exposure rates to pluvial floods that those located to the South. This seems, however, a rather 

weak spatial pattern that could be biased by the methodological shortcomings of the pluvial hazard 

calculation described on Section 2.7 above, as well as by the assumptions made in the exposure 

analysis itself. 

 

 

3.2.3 Exposure index to coastal floods 

Contrary to previous exposure indices, the indicator informing on potential exposure to coastal floods 

shown in Figure 44 (right) is based on the outputs provided by a spatially-explicit model provided by 

RAMSES Deliverable 1.2: Development of a library of impact functions and general uncertainty 

measures, Part II: Library of Flood Damage Functions and Protection Measures (Boettle et al., 2016), 

which is also shown in Figure 44 (left). The flooding model was run for one single impact scenario. 

This indicator ranks cities according to the potentially flooded area under a 100 year coastal storm 

surge event. Although the derivation of potentially flooded areas is based on a digital elevation model 

and thus no specific information about existing flood protection measures – such as existing dikes – 

have been considered, this proxy provides a harmonised and comparable measure of the relative level 

of exposure that the major coastal urban areas in Europe.  

The maps shown in Figure 44 prove that highest exposure levels correspond to the urban areas located 

in the Atlantic Basin, from the Baltic to the Gulf of Biscay, across the North Sea and the British Isles, 

and affect in particular the coastal cities of the Netherlands (with around 80% of the city cluster 

potentially flooded due to a 100 year coastal storm surge event), alongside the cities of Bremerhaven 

in Germany and Le Havre in France. Both these cities have more than 20% of their areas potentially 

flooded due to a 100 year costal storm surge event.  

In the Mediterranean the most exposed urban areas are those located over the Tirrenian-Ligurian seas 

(in particular Livorno, with more than 10% of the urban area potentially flooded due to a 100 year 

costal storm surge event) and the North Adriatic sea, in particular the cities of Rimini (around 10% of 

the urban area potentially flooded due to a 100 year costal storm surge event) and Venice, with 37% of 

the city cluster potentially flooded due to a 100 year costal storm surge event. 
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Figure 44: Percentage of the city cluster potentially flooded due to a 100 year coastal storm 

surge event, according to Boettle et al. (2016) (left), and derived exposure index to coastal 

floods (right). 
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4 Indicator-based Vulnerability Assessment 
 

An Indicator-based Vulnerability Assessment (IBVA) for European cities enables consideration of the 

potential impacts caused by changes in the climate change hazards presented in Section 2. It helps to 

shed light on the key challenges that specific groups of cities face from this perspective, in order to 

better deal with the expected impacts at a European level. This knowledge is a necessary step towards 

the development of effective EU policies for urban adaptation (EEA, 2012). In order to support the 

development of successful and cost-effective adaptation strategies such policies require additional 

integrated and cross-sectoral climate change vulnerability assessments that identify, characterize and 

cluster cities according to the magnitude of the climatic hazards faced and their levels of exposure to 

such potential threats, as well as their intrinsic sensitivity to them and the degree of preparedness that 

cities have to deal with climate change (DG Environment, 2014). 

 

 

4.1 Methodology 

The high level indicator-based vulnerability assessment methodology is based on a sequential 

implementation of a number of analytical steps shown in Figure 45. 

 

 

Figure 45: Analytical sequence followed in our indicator-based vulnerability analysis7. 

                                                      

 

 
7 Adapted from (Tapsell, Penning-Rowsell, Tunstall, & Wilson, 2002; Wolf & McGregor, 2013) 
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The analytical sequence starts with the characterisation of the different impact chains – i.e. the causal 

relations linking the potential impacts and its receptors –. It then continues with the development of a 

data model capturing the different system elements of the impact chains. The sequence follows with 

the generation of a well-structured database including comparable indicators. The data are 

subsequently classified and pre-processed for statistical soundness. Additionally, an internal 

consistency check based on statistical measures of reliability is also performed.  

The first analytical step deals with the reduction of redundancy among vulnerability indicators. This 

has been achieved through the utilisation of weights computed through statistical data reduction 

techniques. The vulnerability scores were subsequently generated as a geometric aggregation of the 

weighted vulnerability indicators.  

A sensitivity assessment was performed on vulnerability scores. Eventually, cities were grouped on 

statistically homogeneous clusters to ease the interpretation of results. Vulnerability scores were 

combined later on with hazard and exposure data, delivering a risk index for all cities under each 

impact chain, presented in Section 5.  

This analytical sequence has been applied on the 571 cities included in the GISCO Urban Audit 2004 

Database
8
 for heatwaves, droughts and pluvial floods. In the case of coastal flooding the assessment 

was performed on the 92 coastal cities included in the GISCO Urban Audit 2004 Database for which 

exposure data were available. In the case of fluvial flooding the assessment was performed for the 365 

Urban Audit cities with water courses with at least 500km2 catchment area (see Section 2.7.2 above 

for additional details). The analysis was performed utilising the R software for statistical computing 

v3.1.3. 

 

 

4.2 Definition of the vulnerable system 

Typically, indicator –based vulnerability assessments rely on the identification of a number of factors 

shaping the vulnerabilities to climate change threats within the specific domains of the urban systems 

that are being analysed, like e.g. certain areas, communities or social groups, or specific sub-systems 

the built environment, the infrastructures or other components (Birkmann and Wisner, 2006; 

Birkmann et al., 2013; Burton, 2012; Carreño et al., 2007; Carter et al., 2014; Charlotte Vinchon et al., 

2011; Cutter et al., 2003, 2009; Guillaumont and Simonet, 2011; Preston, 2012; Villagrán-De-Leon, 

2006). Kienberger et al. (2013) have recently proposed a framework to characterise climate change 

vulnerability assessments according to spatial, time and dimensional criteria. 

The literature provides a number of inventories of explanatory factors that potentially increase or 

alleviate the impacts of climate change within any of the complex socio-environmental components 

that define complex urban systems (Cutter et al., 2008, 2010; Jacobs et al., 2012; Schauser et al., 

2010). These explanatory factors were organised in different categories and represented in a series of 

schematic figures summarising the causal structure of vulnerability and risk within each impact chain. 

Such representations of the vulnerable systems were inspired by Downing’s ‘causal chain of hazard 

development’ (Downing, 1990) and Wisner and Blaikie’s ‘Pressure and Release model’ (Wisner et al., 

                                                      

 

 
8 The dataset was downloaded in spring 2014. 
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1994). These inputs were used as a reference framework for developing ‘RAMSES causal model of 

climate change risk construction’, or more succinctly, ‘impact chains’. 

 

 

Figure 46: A generic impact model representing the causal structure of vulnerability and risk 

under climate change. 

 

 

4.3 Data model  

A comprehensive literature review, presented in Appendix B, allowed researchers to produce a generic 

inventory of indicators that could be used within the assessment. In total, 18 generic categories and 

more than 90 different types of indicators could be identified. Table 6 summarises these findings: 

 

Category of indicators No. of papers 

Social structure  

(DEM) Demographic structure, dynamics, health status (life expectancy, age dependency ratios, 

fertility rates, population growth, family and household structure, nutrition, special needs populations, 

etc.) 

36 

(EDU) Education, skills and knowledge (Training, literacy, enrolment ratios, knowledge of foreign 

language, community knowledge, etc.) 
24 

(ETN) Race and/or ethnicity (immigration rates, community cohesion, language barriers, etc.) 6 

Governance  

(RIG) Human rights (including minorities and press freedom) 2 

(GEN) Gender status (gender ratios, gender income equality, entitlement and participation of women in 

public life) 
10 

(GOV) Quality of government (including participation of citizens, social organizations and institutions, 

community values, political stability, corruption, trust in authorities, volunteering, etc.) 
25 

(POL) Plans, policies and instruments (policies, tools, incentives and disincentives, zoning and building 

standards, conservation programmes, adaptation measures/plans, environment expenses, disaster relief 

systems, early warning systems, etc.) 

15 

(AWA) Risk perception and social behaviour (e.g. recycling rates, awareness, risk training, etc.) 11 

Socio-economic status  

(INC) Socio-economic conditions and entitlement (GDP per capita, income, rent per capita, inequality, 

poverty, social cohesion, homeless, occupation in low-income activities, unemployment and related 

indicators) 

40 

(ECO) Macro-economic indicators (GDP, budget surplus, financial assets, debt payments, investments, 

international trade, business rates, economic structure, economic diversity, etc.) 
17 

(INS) Risk transfer schemes (including social security systems, social transfers, insurance and social-

oriented expenditures) 
10 
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(HOU) Access to housing (ownership, renters, median home loan repayment, etc.) 3 

Access to technology  

(TEC) Technology (R&D expenditure, patents, human resources in R&D, etc.) 11 

Built environment  

(INF) Infrastructures (availability, quality or lack thereof, including characteristics of networks, medical 

facilities, etc.) 
28 

(BUI) Characteristics of the building stock (housing typologies, densities, etc.) 14 

Exposed assets9 (transport density, km of coastline, exposed population, location of hot spots, 

accessibility indexes, isolation of communities, etc.) 
24 

Natural capital and ecosystem services  

(RES) Ecosystem services (land use, resource productivity, agricultural production, fishing resources, 

etc.) 
25 

(CON) Environmental status (environmental degradation, emissions, endangered species, etc.) 9 

Historical records9  

Past events (Number of disasters and catastrophic events, including personal and economic damages) 6 

Climatic indices (observed climatic trends) 30 

Table 6: Categories of indicators used in literature to assess local vulnerability to climate 

change. 

 

 

The Scoping Diagram shown in Figure 47 provides a visual representation of the critical dimensions 

considered in our IBVA. 

 

 

Figure 47: Ramses scoping diagram for the vulnerability dimension of risk. 

 

                                                      

 

 
9 These dimensions are not considered in our data model as part of the vulnerability component. 
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4.4 Data collection 

The vulnerability indicators illustrate the characteristics of the potential receptors of the climate 

change impacts in terms of their sensitivity to such impacts and their “capacity to resist, cope or adapt 

to them”. Vulnerability indicators have been thus classified into two separate groups influencing 

vulnerability in the opposite direction, namely ‘sensitivity’ and ‘adaptive capacity’. All the 

vulnerability indicators have been included in one of these specific categories depending on a simple 

dichotomous classification criterion: those indicators that according to the literature are thought to 

unequivocally increase the vulnerability of the exposed elements as their value/magnitude increase 

have been classified as sensitivity indicators (e.g. as the share of elder population increase, cities 

become more vulnerable to heatwaves); reversely, the indicators that reduce vulnerability as their 

value/magnitude increase have been classified as adaptive capacity indicators (e.g. larger shares of 

green/blue areas are thought to reduce urban vulnerability to heatwaves, as both land cover classes 

increase the thermal comfort of the surrounding areas).  

Besides, as a general criterion for redundancy reduction, indicators that are built basing on the same 

background variables and characterise contradictory or mutually exclusive socio-economic, 

environmental or social trends (e.g. share of soil sealed area vs share of total green/blue area) have 

been included only once in the data model, either within the sensitivity or within the adaptive capacity 

category, as relevant.  

In all cases data coverage and comparability, rather than precision and accuracy, have been the main 

selection criteria. The data coverage threshold for the vulnerability indicators has been set on a 50% of 

cities included. In order to increase data coverage as far as possible a flexible approach was adopted 

with regard to temporal harmonisation. In practice, this implied that the indicators were collected for 

the last available year over the period 2004 to 2014. 

Socio-demographic indicators of exposure and vulnerability drew heavily on existing datasets, many 

from the Urban Audit database. This database provides a good comparable set of indicators with 

European coverage including basic information on cities, and it has been frequently used by previous 

climate change vulnerability assessments performed at this scale (EEA, 2012).  

Some of the variables included in the Urban Audit database were combined to each other or with other 

variables to produce new indicators. Such newly developed indicators used within the vulnerability 

assessment are listed below: 

 Population growth rate over the period 2004-2012, basing on DE1001V - Population on the 

1st of January, total, retrieved from Urban Audit. 

 Population density: total resident population per square km. Indicator built basing on GISCO 

GIS layers and Urban Audit population data: DE1001V - Population on the 1st of January, 

total. 

 Health status: Number of deaths per year under 65 due to diseases of the circulatory or 

respiratory systems per 1000 inhabitants, based on Urban Audit data: SA2013V - Number of 

deaths per year under 65 due to diseases of the circulatory or respiratory systems and 

DE1001V - Population on the 1st of January, total. 

 Education: Proportion of working age population qualified at level 5 or 6 ISCED, basing on 

Urban Audit data: TE2031V - Persons (aged 25-64) with ISCED level 5 or 6 as the highest 

level of education and population data: DE1058V - Population on the 1st of January, 25-34 
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years, total; DE1061V - Population on the 1st of January, 35-44 years, total; DE1064V - 

Population on the 1st of January, 45-54 years, total; DE1025V - Population on the 1st of 

January, 55-64 years, total. 

 Economic diversification: Shannon index of economic diversity, basing on Urban Audit data 

on Employment (jobs) in NACE sectors (EC2008V to EC2038V). 

 Use of water resources: Water consumption (m³ per year per capita), basing on Urban Audit 

data: EN3003V - Total use of water - m³ and DE1001V - Population on the 1st of January, 

total. 

A major limitation in this indicator-based vulnerability assessment has been the scarcity of comparable 

data needed to characterise European cities along some specific dimensions of vulnerability. This is a 

limitation frequently mentioned by many of the indicator –based vulnerability assessments reviewed in 

this work (Charlotte Vinchon et al., 2011; Jacobs et al., 2012; Jeremy Carter et al., 2012).  

In particular, there is a lack of comparable data assessing the degree to which cities and citizens are 

aware and are already taking specific steps towards climate change adaptation. As a result, some proxy 

indicators providing relevant information on this dimension were produced within our assessment. 

City commitment to adapt was verified through the participation in on-going initiatives such as 

Mayors Adapt. A proxy indicator on the potential degree of awareness within cities was produced 

basing on recursive Internet searches
10

, thanks to the functionality of Google custom search API, as 

shown below: 

 City participating in Mayors Adapt initiative, basing on the information available at 

http://mayors-adapt.eu/taking-action/participating-cities/. Accessed 23 July 2015 

 Google hits for the string "city name & climate change" (hits per thousand 

inhabitants). Search performed in April 2015 using the Custom Search JSON/Atom API 

by Google 

 Google hits for the string "city name & climate change & heatwave" (hits per million 

inhabitants). Search performed in April 2015 using the Custom Search JSON/Atom API 

by Google 

 Google hits for the string "city name & climate change & urban heat island" (hits per 

million inhabitants). Search performed in April 2015 Custom Search JSON/Atom API by 

Google 

 Google hits for the string "city name & climate change & flood" (hits per million 

inhabitants). Search performed in April 2015 using the Custom Search JSON/Atom API 

by Google 

 Google hits for the string "city name & climate change & drought" (hits per million 

inhabitants). Search performed in April 2015 using the Custom Search JSON/Atom API 

by Google 

 Google hits for the string "city name & climate change & sea level rise" (hits per 

million inhabitants). Search performed in April 2015 using the Custom Search 

JSON/Atom API by Google 

In total, 135 indicators have been collected or derived, of which 58 have been so far included in the 

data model. These indicators were selected following a quality criterion based on relevance and 

                                                      

 

 
10 All the internet searches were performed in all the official languages spoken in each city. Resulting hits were standardised by 
population and outliers were removed for data consistency. 



RAMSES Project (Grant Agreement n° 308497) D3.1 

- 67 - 

interpretability (according to the literature), coverage (more than a half of the cities included), and 

reduced redundancy (i.e. avoiding indicators that measure similar socio-economic trends).  

Table 8 (Sensitivity) and Table 8 (Adaptive Capacity) present the vulnerability indicators included in 

the data model: 

 

Vulnerability indicators – sensitivity   

Code Description Threat Source Relevance 

EEASEALI 
Mean soil sealing [%] of UMZ 2006 of core city 

(EEA 2012) 
FLP,FLF 

EEA, 

2012 
(Balica et al., 2012) 

EN2002V 
Number of days ozone O3 concentrations exceed 

120 µg/m³ 
HW 

Urban 

Audit 
(ASC, 2014) 

EN2005V 
Number of days particulate matter PM10 

concentrations exceed 50 µg/m³ 
HW 

Urban 

Audit 
(ASC, 2014) 

EN2025V 
Accumulated ozone concentration in excess 70 

µg/m³ 
HW 

Urban 

Audit 
(ASC, 2014) 

EN2026V Annual average concentration of NO2 (µg/m³) HW 
Urban 

Audit 
(ASC, 2014) 

EN2027V Annual average concentration of PM10 (µg/m³) HW 
Urban 

Audit 
(ASC, 2014) 

EN3010V Price of a m³ of domestic water - Euro DR 
Urban 

Audit 
(DG Regio, 2009) 

DE3002I 
Proportion of households that are 1-person 

households 
HW 

Urban 

Audit 

(Uejio et al., 2011; 

Wolf and McGregor, 

2013) 

DE3005I 
Proportion of households that are lone-parent 

households 
HW 

Urban 

Audit 

(Klein Rosenthal et 

al., 2014) 

DE3008I 
Proportion of households that are lone-pensioner 

households 
HW 

Urban 

Audit 

(Klein Rosenthal et 

al., 2014; Uejio et al., 

2011) 

DE3016I 
Lone parent households per 100 households with 

children aged 0-17 
HW 

Urban 

Audit 

(ARUP, 2014; Klein 

Rosenthal et al., 2014; 

Wolf and McGregor, 

2013) 

EC1020I Unemployment rate 
HW,FLP,FLF

,FLC,DR 

Urban 

Audit 

(Cutter et al., 2009; 

Lee, 2014) 

DE2003I Non-EU foreigners as a proportion of population 
HW,FLP,FLF

,FLC,DR 

Urban 

Audit 

(Cutter et al., 2009; 

El-Zein and Tonmoy, 

2015; Kaźmierczak 

and Cavan, 2011; 

Wilhite and Hayes, 

2005) 

DE1040I Proportion of population aged 0-4 years 
FLP,FLF,FL

C,HW 

Urban 

Audit 

(Cutter et al., 2009; 

Lee, 2014) 

DE1055I Proportion of population aged 75 years and over 
FLP,FLF,FL

C,HW 

Urban 

Audit 

(Cutter et al., 2009; 

Lee, 2014) 

EN5101ITECI 

Population density: total resident pop. per square 

km. Indicator built basing on GISCO GIS layers and 

Urban Audit population data (DE1001V - 

Population on the 1st of January, total) 

HW,DR 
Tecnalia 

R&I 

(ARUP, 2014; 

Iglesias et al., 2009; 

Stefano et al., 2015; 

Wolf and McGregor, 

2013) 

SA2013TECI 

Number of deaths per year under 65 due to diseases 

of the circulatory or respiratory systems per 1000 

inhabitants, based on Urban Audit data: SA2013V - 

Number of deaths per year under 65 due to diseases 

of the circulatory or respiratory systems and 

DE1001V - Population on the 1st of January, total 

HW 
Tecnalia 

R&I 

(ASC, 2014; Wolf 

and McGregor, 2013) 

EN3003TECI 

Total use of water (m³ per capita per year) basing on 

Urban Audit data: EN3003V - Total use of water - 

m³ and DE1001V - Population on the 1st of January, 

total 

DR 
Tecnalia 

R&I 

(Stefano et al., 2015) 

 

DE1001TECI 

Population growth rate over the period 2004-2012, 

basing on DE1001V - Population on the 1st of 

January, total retrieved from Urban Audit 

DR 
Tecnalia 

R&I 

(Knutson et al., 1998; 

Stefano et al., 2015) 

Table 7: Sensitivity indicators included in RAMSES data model. 
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Vulnerability indicators – adaptive capacity   

Code Description Threat Source Relevance 

EEAGRBLI 
Green/blue urban area [%] UMZ 2006 of core 

city (EEA 2012) 
HW 

EEA, 

2012 

 (Uejio et al., 

2011) 

EC3039V 
Median disposable annual household income - 

EUR 

HW,FLP,FLF,FL

C,DR 

Urban 

Audit 

(Johnson et al., 

2012; Koks et al., 

2015) 

EC3040V 
Average disposable annual household income - 

EUR 

HW,FLP,FLF,FL

C,DR 

Urban 

Audit 

(Balica et al., 

2012; Johnson et 

al., 2012; Koks et 

al., 2015) 

SA1007I Proportion of households living in houses HW 
Urban 

Audit 

(ARUP, 2014; 

ASC, 2014; Uejio 

et al., 2011) 

SA1022V 
Average area of living accommodation - 

m²/person 
HW 

Urban 

Audit 
(ARUP, 2014) 

PS3090TECV 
Most people can be trusted (synthetic index 0-

100)  

HW,FLP,FLF,FL

C,DR 

Urban 

Audit 

(Kuhlicke et al., 

2011) 

PS3120TECV 
City committed to fight against climate change 

(synthetic index 0-100)  

HW,FLP,FLF,FL

C,DR 

Urban 

Audit 
(EEA, 2012) 

TE2031TECI 

Proportion of working age population qualified 

at level 5 or 6 ISCED, basing on Urban Audit 

data: TE2031V - Persons (aged 25-64) with 

ISCED level 5 or 6 as the highest level of 

education and population data: DE1058V - 

Population on the 1st of January, 25-34 years, 

total; DE1061V - Population on the 1st of 

January, 35-44 years, total; DE1064V - 

Population on the 1st of January, 45-54 years, 

total; DE1025V - Population on the 1st of 

January, 55-64 years, total 

HW,FLP,FLF,FL

C,DR 

Tecnalia 

R&I 

(Brooks et al., 

2005) 

AWGCCTECI 

Google hits for the string "climate change" (hits 

per thousand inhabitants). Search performed in 

April 2015 using the Custom Search 

JSON/Atom API by Google 

HW,FLP,FLF,FL

C,DR 

Tecnalia 

R&I 
New indicator 

AWGHWTECI 

Google hits for the string "city name & climate 

change & heatwave" (hits per million 

inhabitants). Search performed in April 2015 

using the Custom Search JSON/Atom API by 

Google 

HW 
Tecnalia 

R&I 
New indicator 

AWGUHITECI 

Google hits for the string "city name & climate 

change & urban heat island" (hits per million 

inhabitants). Search performed in April 2015 

Custom Search JSON/Atom API by Google 

HW 
Tecnalia 

R&I 
New indicator 

AWGFLOTECI 

Google hits for the string "city name & climate 

change & flood" (hits per million inhabitants). 

Search performed in April 2015 using the 

Custom Search JSON/Atom API by Google 

FLP,FLF 
Tecnalia 

R&I 
New indicator 

AWGDROTECI 

Google hits for the string "city name & climate 

change & drought" (hits per million inhabitants). 

Search performed in April 2015 using the 

Custom Search JSON/Atom API by Google 

DR 
Tecnalia 

R&I 
New indicator 

AWGSLRTECI 

Google hits for the string "city name & climate 

change & sea level rise" (hits per million 

inhabitants). Search performed in April 2015 

using the Custom Search JSON/Atom API by 

Google 

FLC 
Tecnalia 

R&I 
New indicator 

ECSHADIVTECI 

Shannon index of economic diversity, basing on 

Urban Audit data on Employment (jobs) in 

NACE sectors (EC2008V to EC2038V) 

DR 
Tecnalia 

R&I 
New indicator 

MAYADTECV 

City participating in Mayors Adapt initiative, 

basing on http://mayors-adapt.eu/taking-

action/participating-cities/. Accessed 23 July 

2015 

HW,FLP,FLF,FL

C,DR 

Tecnalia 

R&I 
New indicator 

Table 8: Adaptive capacity indicators included in RAMSES data model. 
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Appendix A provides a more detailed overview of the data model, including the number of variables 

used to characterise each vulnerability dimension, as well as the weights and the transformation 

methods used in each case.  

 

4.5 Data preparation 

Data preparation was performed on all the hazard, exposure and vulnerability indicators based on a 

sequential implementation of the following steps: 

1. Overall quality check: All the indicators were visually supervised for atypical values. All 

anomalous values (e.g. values expressed in the wrong scale or including unexpected 

characters) were removed from the distribution. Additionally, statistical outliers (i.e. values 

laying beyond the threshold set at 1.5 times the interquartile range) were removed for those 

indicators built basing on Internet searches.  

2. Transformation of variables: Sample normalisation is a prerequisite for a number of the 

statistical tests that are usually performed within indicator –based vulnerability assessments 

(Adger et al., 2004; Cutter et al., 2010; Jun et al., 2013; Müller et al., 2011). Most of the 

previous works reviewed by this project used any form of data transformation before 

aggregation (Lee, 2014; Müller et al., 2011; e.g. Tapsell et al., 2002). Similarly, all the 

variables included in our data model were transformed in order to normalise data distributions. 

Different transformation methods were tested for each variable (log method, square roots 

method, square method, cubic root method and quadratic root method). The transformation 

method that mostly reduced skewness within the distributions was selected. In those cases 

when the original data were less skewed than the transformed versions, the original figures 

were kept. Appendix A summarises the statistical transformation method applied to each 

variable, if any. 

3. Standardisation of variables: Standardisation makes statistically consistent the aggregation 

of variables expressed in different units of measures and scales, preventing one specific 

variable having under or over influence on the final aggregated score (Koks et al., 2015). All 

the variables included in the vulnerability assessments were standardised as Z-scores, using 

the following formula: 

𝑧 =
𝑥 − 𝜇

𝜎
 

4. Re-scaling of variables: For simplicity, all variables were further re-scaled to a new scale 

ranging from 1 to 2, based on the minimum and maximum values of the distribution. In the 

case of the hazard variables belonging to any of the three impact scenarios, the minimum 

value used for the standardisation of the single observations belonging to any of the scenarios 

considered was the minimum value recorded under the low impact scenario, whereas the 

maximum was set as the maximum value under the high impact scenario. The formulation is 

as follows: 

𝑠 =
𝑥 − 𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛(𝑥)
+ 1 

5. Imputation of missing values: Finally, all the missing values were imputed through Single 

Imputation (median substitution), as a simple operational way of reducing the bias in data 

analysis (Nardo et al., 2005). 
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4.6 Internal consistency check 

Internal consistency tests assess scale reliability and internal consistency of uni-dimensional constructs 

basing on the correlation between the individual indicators combined in such constructs. More 

specifically, consistency tests evaluate if the individual indicators are measuring the latent 

phenomenon properly (Nardo, M. et al., 2008). For these reasons, testing for internal consistency is a 

necessary step towards the construction of composite indicators, in particular for those based on 

weights derived by Factor Analysis (Fekete, 2009). 

Cronbach’s alpha (C-alpha) is one of the most popular coefficients of reliability. Even if strictly 

speaking C-alpha is not a measure of uni-dimensionality (Nardo, M. et al., 2008), this coefficient has 

been widely used as internal consistency test by a number previous works to build vulnerability and 

resilience indexes to climate change (Cutter et al., 2014; Fekete, 2009). Table 9 shows the C-alpha 

scores for the indicator-based vulnerability assessment and the number of variables considered in each 

impact chain.  

 

Threat Vulnerability dimension Number of variables included Standardised Cronbach’s alpha 

Multi-threat Sensitivity 19 0.66 

Droughts Sensitivity 6 0.30 

Heatwaves Sensitivity 15 0.61 

Pluvial flooding Sensitivity 5 -0.2711 

Fluvial flooding Sensitivity 5 -0.3011 

Coastal flooding Sensitivity 4 0.41 

Multi-threat Adaptive capacity 16 0.58 

Droughts Adaptive capacity 9 0.51 

Heatwaves Adaptive capacity 12 0.51 

Pluvial flooding Adaptive capacity 8 0.53 

Fluvial flooding Adaptive capacity 8 0.57 

Coastal flooding Adaptive capacity 8 0.51 

Table 9: Internal consistency analysis of the vulnerability indicators. 

 

The C-alpha value for all the 16 variables included in the adaptive capacity dimension was 0.58. The 

C-alpha value for those variables (19) informing on urban sensitivity was 0.66. These moderate values 

suggest acceptable levels of internal consistency for the purpose of building a composite index at the 

European scale (Cho and Kim, 2015; Scheurich et al., 2000).  

Similarly to previous research on the construction of composite vulnerability/resilience indexes, we 

did not expect the individual threat-specific sub-indices to produce high C-alpha values (Cutter et al., 

2014), in particular if one considers that some of our proxy indicators included in the distribution are 

                                                      

 

 
11 Negative values are explained by the consideration of the percentage of green/blue urban in the urban morphological zone of core 
city (EEAGRBLI) as a sensitivity indicator. This is a morphological index that does not keep any structural relation to the remaining 
socio-economic indices considered in the sensitivity construct. If this specific indicator is excluded from the computation of the 

sensitivity indices to pluvial and fluvial flood hazards, the C-alpha value becomes much higher, around 0.45 in both cases, which 

consistent with the values obtained for the remaining sensitivity indices. 



RAMSES Project (Grant Agreement n° 308497) D3.1 

- 71 - 

derived from physical and morphological features, or from surveys and indirect sources tracking the 

perception of citizens and city commitment to adapt. 

 

 

4.7 Weighting procedure 

Appling equal weighting to all the variables combined in composite indicators could introduce an 

element of double counting into the index, as a result of insufficient knowledge of the causal relations 

among the variables (Nardo, M. et al., 2008). The alternative is to test indicators for statistical 

correlation and find the most appropriate weighting procedure that takes account of such latent 

relations among the variables. In our work the individual variables included in the two dimensions of 

vulnerability (sensitivity and adaptive capacity) have been weighted separately basing on a 

combination of Factor Analysis (FA) and Principal Component Analysis (PCA).  

FA and PCA are two methods commonly used for reducing the dimensionality of a dataset by 

reducing its internal redundancy. The goal is to account for the highest possible variance in the data 

using the smallest possible number of factors. This implies that this method assign lower weights to all 

the variables that share a certain level of explanatory capacity (i.e. are collinear). On the contrary, 

those variables that hold a larger amount of explanatory capacity are allocated higher weights. 

Consequently, this weighting procedure should be understood as a method for reducing redundancy in 

the data model, rather than as a method for defining the relative importance of the different variables 

contributing to the composite sub-indices of sensitivity and adaptive capacity.  

The methodology applied for FA follows the standard procedure (e.g. Nardo et al., 2005). FA was run 

on all sensitivity and adaptive capacity variables. Basing on the correlation structure shown by all 

variables, a certain number of latent factors were extracted basing on PCA. The number of factors to 

extract was decided according to the following criteria: (1) number of factors with eigen values larger 

than one; (2) number of factors with individual contribution to overall variance by more than 10%, 

and; (3) number of factors with cumulative contribution to overall variance by more than 60%. 

Varimax rotation was used in order to maximize the variance of loadings, simplifying the 

interpretation (Fekete, 2009; Kaźmierczak and Cavan, 2011).  

Weights were defined basing on the matrix of factor loadings after rotation: first, square factor 

loadings are computed; subsequently, weighted intra-factor loadings are calculated by dividing the 

square factor loadings by the proportion of variance explained by each factor; then across-factor 

weighted loadings are generated by dividing intra-factor weighted loads by the proportion of variance 

explained by each factor in relation to the total cumulative variance explained by all factors; 

subsequently those individual indicators with the highest factor loadings across all factors are selected 

and re-scaled to unity, as final weights. This method weighted the final city sensibility and adaptive 

capacity scores by both the individual component loading of the indicator and the total amount of 

explained variance of the factor in which each indicator was included (Frazier et al., 2014; Nicoletti et 

al., 1999). Appendix A summarises the weights attributed to each variable.  

It is important to emphasise that despite the use of different values to weight the variables included in 

the sensitivity and adaptive capacity dimensions, the final contribution of each of these components to 

the final risk score presented on Section 5 remained proportional, as shown in the following figure: 
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Figure 48: Contribution of the different components of risk to the final risk score12. 

 

 

4.8 Vulnerability scoring 

Similarly to hazard and exposure indices, sensitivity and adaptive capacity indices under each impact 

chain were also estimated through geometric aggregation of the individual indicators shown on Table 

7 and Table 8, using the following formulas: 

𝑆𝑐𝑡 = ∏  𝑠𝑐𝑖
 𝑤𝑖 𝐼

𝑖=1  (4.1) 

where 𝑆𝑐𝑡 = sensitivity score for city c under climate threat t; 𝑠𝑐𝑖 = value of sensitivity factor i for 

threat t in city c; 𝑤𝑖 = weight of sensitivity factor i obtained by means of FA/PCA; I = total number of 

sensitivity factors considered; 

𝐴𝐶𝑐𝑡  =  ∏  𝑎𝑐
𝑐𝑗

 𝑤𝑗 𝐽
𝑗=1   (4.2) 

where 𝐴𝐶𝑐𝑡 = adaptive capacity score for city c under climate threat t; 𝑎𝑐𝑐𝑗 = value of adaptive 

capacity factor j for threat t in city c; 𝑤𝑗 = weight of adaptive capacity factor j obtained by means of 

FA/PCA; J = total number of adaptive capacity factors considered. 

The sensitivity (𝑆𝑐𝑡
′ ) and adaptive capacity (𝐴𝐶𝑐𝑡

′ ) scores were standardised and re-scaled prior to 

aggregation with the hazard indices as vulnerability scores, using the following formula: 

𝑉𝑐𝑡  =  
𝑆𝑐𝑡

′

𝐴𝐶𝑐𝑡
′   (4.3) 

where 𝑉𝑐𝑡 = vulnerability score for city c under climate threat t; 

                                                      

 

 
12 Whenever hazard data were not available (e.g. coastal floods), the exposure and vulnerability components contributed 
proportionally to the final risk score. Similarly, when exposure data were not accessible (e.g. fluvial floods), hazard and 

vulnerability contributed proportionally to the final risk score.  
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Finally, the vulnerability scores were standardised and re-scaled (𝑉𝑐𝑡
′ ) again prior to aggregation with 

the hazard indices to quantify relative risks, as described in Section 4.5.  

Results for all EU Urban Audit cities are presented in Figure 49 and Figure 50. The indicators shaping 

each impact chain and vulnerability dimension are listed on Table 7 and Table 8 above.   

It is important to emphasise that the maps presented in Figure 49 and Figure 50 do not provide any 

explicit information on the relative intensity of the climate threats that could be potentially faced by 

the urban areas, which in our assessment are considered within the hazard and exposure dimensions 

discussed on Sections 2 and 3. Indeed, the maps presented in Figure 49 and Figure 50 summarise the 

intrinsic capacity of cities to cope and respond to hypothetical climate threats, regardless of the actual 

hazards and exposure levels faced by each city.  

Maps presented in in Figure 49 and Figure 50 all use the following legend: 

 

 

4.8.1 Combined vulnerability indices 

 

Figure 49: Vulnerability indices to heatwaves (left) and droughts (right). 

  

The vulnerability indices shown in Figure 49 summarise all the relevant dimensions that are 

considered to shape the vulnerability to climate change for heatwaves (left) and droughts (right). The 

data allowed the computation of the vulnerability scores for all the 571cities included in the Urban 

Audit database, for both impact chains (see Appendix A for additional details on the data model).  

Cities showing comparatively higher vulnerability to heatwaves are located in the central area of the 

EU and the southernmost regions of the New Member States, as well as on the Baltic republics. These 

are the regions where a combination of socio-economic and physical features that potentially increase 

urban sensitivity to heatwaves is mostly found. In contrast, cities with the lowest vulnerability scores 
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scatter over the peripheral regions of the EU, with large internal differences in counties such as Italy 

and the United Kingdom. 

The spatial pattern is less obvious in relation to droughts (right). In this case, the areas with the highest 

vulnerability scores lay in the westernmost countries, some regions in Eastern Germany, Bulgaria, 

Cyprus and Greece. Still, there are huge internal differences within countries such as Spain and the 

UK. In these areas there does not seem to be an obvious spatial pattern. 

 

   

Figure 50: Vulnerability indices to pluvial floods (left), fluvial floods (centre), and coastal 

floods (right). 

 

Figure 50 shows the vulnerability indices for pluvial floods (left), fluvial floods (centre) and coastal 

floods (right). The vulnerability indices were computed for all the 571 Urban Audit cities in the case 

of pluvial floods, the 365 Urban Audit cities with water courses with at least 500km2 catchment area 

(see Section 2.7.2 above for additional details), in the case of fluvial floods, and 92 coastal cities for 

which exposure data were accessible (see Boettle et al., 2016 for details on how this indicator was 

generated), in the case of coastal floods. Appendix A provides additional details on the data model.  

Due to the great overlaps between the indicators used to characterise the sensitivity and adaptive 

capacity to pluvial and fluvial floods, these impact chains show very similar profiles on the 

vulnerability scores across all the cities considered in each analysis (571 cities for pluvial floods and 

365 cities for fluvial floods). In both cases there seems to be an absence of a clear spatial pattern in the 

distribution of vulnerability scores.  

Vulnerability values seem to be mixed and scattered even within the different countries, which calls 

for a higher resolution analysis. Nonetheless, lower values seem to predominate in the British Isles and 

the Scandinavian countries, whereas higher vulnerability scores seem to be distributed over the 

Mediterranean countries (with the exception of the cities located in the Italian Mezzogiorno), the 

Bohemian (Czech Republic, Slovakia and Austria) area, and eastern Danubian regions (Romania, 

Bulgaria). 

On the contrary, vulnerability to coastal floods shows shown in Figure 50 (right) show a more defined 

spatial pattern. Cities laying over the Atlantic coast, western Mediterranean and the Baltic show 

relatively higher vulnerability scores, whereas cities located in Italian Peninsula, the UK and the 

Scandinavian countries tend to have lower vulnerability to coastal floods.  
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4.9 Sensitivity analysis 

A sensitivity analysis comparing alternative weighting and aggregation procedures was performed. 

The analysis based on a comparison between the two alternative aggregation (geometric vs arithmetic) 

and weighting (FA/PCA weights vs equal weights) methods. Pearson’s, Spearman‘s and Kendall‘s 

correlation indexes were calculated for all the alternative computations for vulnerability scores. This 

was done for all threats.  

Multi-threat vulnerability scores were also assessed comparing the multi-threat scores generated by 

means of an ex-ante combination of the individual indicators versus an ex-post combination of the 

threat-specific vulnerability values into multi-threat scores (as in Preston et al., 2008). Table 10 to 

Table 12 show the resulting Pearson’s correlation scores for all these methods. The outcomes of the 

sensitivity analysis show very consistent results of the vulnerability assessment across all the possible 

aggregation approaches considered here. 

 

Aggregation 

method 

  
Additive 

 Weights  FA/PCA Proportional 

  
Threats 

Multi-

threat 
Droughts 

Floods 

(all 

types) 

Heatwaves 
Multi-

threat 
Droughts 

Floods 

(all 

types) 

Heatwaves 

M
u

lt
ip

li
ca

ti
v

e 

F
A

/P
C

A
 

Multi-

threat 
0.98 0.48 0.59 0.92 0.91 0.53 0.62 0.90 

Droughts 0.50 0.99 0.63 0.38 0.52 0.90 0.64 0.37 

Floods (all 

types) 
0.59 0.65 0.99 0.62 0.64 0.80 0.96 0.58 

Heatwaves 0.93 0.37 0.62 0.99 0.90 0.46 0.66 0.94 

P
ro

p
o

rt
io

n
a
l Multi-

threat 
0.91 0.49 0.63 0.89 0.99 0.59 0.67 0.93 

Droughts 0.54 0.90 0.76 0.47 0.60 0.99 0.76 0.45 

Floods (all 

types) 
0.61 0.67 0.95 0.65 0.67 0.79 0.99 0.61 

Heatwaves 0.90 0.33 0.57 0.92 0.92 0.42 0.60 0.99 

Table 10: Results of the sensitivity analysis for vulnerability scores (Pearson’s coefficient of 

correlation) – multiplicative vs additive aggregation. 

 

 

   Ex-ante aggregation 

 Aggregation 

method 
 Additive Multiplicative 

  Weights FA/PCA Proportional FA/PCA Proportional 

E
x

-p
o

st
 a

g
g

re
g

a
ti

o
n

 

Additive 
FA/PCA 0.88 0.87 0.85 0.85 

Proportional 0.87 0.92 0.86 0.91 

Multiplicative 

FA/PCA 0.88 0.88 0.88 0.88 

Proportional 0.86 0.91 0.86 0.92 

Table 11: Results of the sensitivity analysis for multi-threat vulnerability scores (Pearson’s 

coefficient of correlation) –ex-ante vs ex-post aggregation. 
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Weights   Proportional 

 Aggregatio

n method  

 
Multiplicative Additive 

  
Threats 

Multi-

threat 
Droughts 

Floods 

(all 

types) 

Heatwaves 
Multi-

threat 
Droughts 

Floods 

(all 

types) 

Heatwaves 

F
A

/P
C

A
  M

u
lt

ip
li

ca
ti

v
e 

Multi-

threat 
0.92 0.56 0.62 0.90 0.91 0.53 0.62 0.90 

Droughts 0.52 0.91 0.66 0.36 0.52 0.90 0.64 0.37 

Floods 

(all 

types) 

0.63 0.80 0.96 0.56 0.60 0.80 0.96 0.58 

Heatwav

es 
0.91 0.47 0.65 0.94 0.90 0.46 0.56 0.94 

A
d

d
it

iv
e 

Multi-

threat 
0.91 0.54 0.61 0.90 0.92 0.53 0.64 0.91 

Droughts 0.49 0.90 0.67 0.33 0.50 0.92 0.66 0.36 

Floods 

(all 

types) 

0.63 0.76 0.95 0.57 0.65 0.78 0.97 0.60 

Heatwav

es 
0.89 0.47 0.65 0.92 0.90 0.47 0.67 0.94 

Table 12: Results of the sensitivity analysis for vulnerability scores (Pearson’s coefficient of 

correlation) – FA/PCA vs proportional weights. 

 

 

 

4.10 Analysis of results 

A K-Means Cluster Analysis has been performed to understand the spatial pattern of vulnerabilities 

across the different threats. This method partitions cities into a given number of k groups such that the 

sum of squares from points to the assigned cluster centres is minimised.  

A key issue when conducting cluster analysis is the decision on the number of clusters to extract. In 

this case, the ‘elbow criterion’, based on the curvature of the within group variance (showin in Figure 

51), was followed to select the number of clusters to distinguish within our analysis.  

 

  
Figure 51: Vulnerability clusters – The within groups variance represented by the sum of 

squares. 
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The cluster analysis grouped cities according to the values of the resulting vulnerability indices to the 

different climate change hazards. For the sake of simplicity, differences between specific flood types 

(i.e. pluvial, fluvial and coastal) were disregarded in this analysis. Figure 52 shows the resulting 

spatial structure for the assessed cities considering 7 clusters.  

 

 

Figure 52: City clusters based on different combinations of threat-specific vulnerability 

scores. 

 

Cluster 1 includes cities with medium to low vulnerabilities to heatwaves, droughts and floods. In 

contrast, Cluster 2 includes cities with medium to high vulnerabilities to these same threats. Cluster 3 

includes cities with average vulnerabilities to heatwaves and droughts and medium to low 

vulnerabilities to floods. Cluster 4 includes cities with relatively high vulnerabilities to the three 

potential threats, thus deserving an in-depth vulnerability assessment. Cluster 5 includes cities with 

relatively high vulnerability to droughts, medium to high vulnerabilities to floods and medium to high 

vulnerabilities to heatwaves. Cluster 6 includes cities with low vulnerabilities to droughts and floods 

and medium to low vulnerabilities to heatwaves. Cluster 7 includes cities with medium to low 

vulnerabilities to droughts and floods, and medium to high vulnerabilities to heatwaves. 

Whereas clusters 1, 2 and to a limited extent also 7 could be said to follow a rather coherent spatial 

distribution, cities included in clusters 3, 4, 5 and 6 do not show any traceable pattern at all. This 

comes in recognition that (1) different combinations of vulnerabilities are possible and do not depend 

upon the geographic characteristics of the regions where cities belong and the nature of hazards being 

faced, and (2) that urban vulnerability to climate change does not necessarily mirror the structural 

socio-economic patterns behind most of the indicators combined in the vulnerability indices; 
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vulnerability score are also a result of a number of dimensions entirely in the hands of local 

administrations, such as increasing awareness and implementing soft actions towards adaptation. 

Although in our analysis the former factors could only be captured through proxy indices based on 

Internet searches, results illustrate the importance of considering awareness and governance factors 

within climate change vulnerability assessments. 
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5 Risk scoring: ranking cities according to the relative 

magnitude of climate change-driven risks 
 

The hazard, exposure and vulnerability indices have been combined to inform on the relative level of 

risk faced by each city under each impact chain. A risk score, Rct, for each city, c, and climate change 

threat, t, is calculated as: 

𝑅𝑐𝑡 = √𝐻𝑐𝑡
′ × 𝑉𝑐𝑡

′ × 𝐸𝑐𝑡
′3  (5.1) 

where the standardised hazard score 𝐻𝑐𝑡
′ , standardised exposure score 𝐸𝑐𝑡

′  and standardised 

vulnerability score 𝑉𝑐𝑡
′  are aggregated as a risk score 𝑅𝑐𝑡. 𝑅𝑐𝑡 is standardised and re-scaled for 

visualisation as 𝑅𝑐𝑡
′ . 

Thus, the risk indices have been generated as the intersection of hazard, exposure and 

vulnerability scores. 

Figure 53 to Figure 57 present the resulting relative risk indices for the Urban Audit cities under a low 

(left), medium (centre) and high (right) impact scenarios for all the impact chains considered in this 

work. Maps shown in Figure 53 to Figure 57 all use the following legend: 

 

 

5.1 Heatwave risk 

Figure 53 shows the relative heatwave risk levels for the 571 Urban Audit cities under a low (left), 

medium (centre) and high (right) impact scenarios. These maps provide clear evidence that the cities 

where potential heatwave risks are more incumbent under the three climate scenarios are those located 

over the central continental European belt, which extends from central France to Romania and 

Bulgaria, with a few ramifications to the west (UK), southern Greece, and up North to the Baltic 

Republics. This is motivated by a combined increased probability or intensity in the expected 

heatwaves, coupled with a comparatively more severe UHI effect in those areas and/or relatively 

higher levels of exposed population, as well as with relatively higher levels of vulnerability scores.  

In contrast, most cities laying in the Iberian Peninsula, Scandinavia and the Mediterranean regions 

show medium to lower levels in the combined heatwave risk scores. In the Mediterranean cities this is 

mainly due to a reduced intensity of the UHI effect. The natural climate in this region is characterized 

by dry hot summers and therefore these urban areas are better adapted to high temperatures. The 

effectiveness of the adaptation measures in place in these cities – related to urban morphology, types 

of vegetation, shade artefacts, etc. – is perceivable on the observed thermal gradient during summer 

months, which in most cases is less acute than in northern latitudes, and can sometimes be even 

negative. This holds for the following list of cities: Bari, Marbella, Reggio di Calabria, 

Alicante/Alacant, Almeria, Huelva, Cagliari, Lefkosia, Toledo, Malaga, Rimini, Setubal, Valletta and 

Taranto. In the Scandinavian cities lower heatwave risk scores are mostly explained by a lesser 

intensity and frequency of heatwave events under the three climate change scenarios.  
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Figure 53: Heatwave risk for the low (left), medium (centre) and high (right) impact scenarios. 

     

Figure 54: Drought risk for the low (left), medium (centre) and high (right) impact scenarios. 
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5.2 Drought risk 

Figure 54 shows the relative drought risk levels for the 571 Urban Audit cities under a low (left), 

medium (centre) and high (right) impact scenarios. These relative risk maps represent the intersection 

of hazard, exposure and vulnerability indices. Thus, the resulting risk scores consider issues such as: 

(1) the relative change on the expected severity and frequency of droughts under the three climate 

change impact scenarios; (2) the level of exposure of each city – dependant on its dimension –, and; 

(3) the resulting vulnerability scores. 

The maps clearly show a gradual and steady increase on the risk levels from the low to the high impact 

scenario. This suggests that the dominant underlying component shaping risk scores is drought hazard, 

which shows a quite similar increase pattern along the low, medium and high scenarios (see Figure 

41). The spatial pattern of both hazard and risk scores depict a situation in which most cities located 

around the Mediterranean and Black sea basins, in particular those located in the Iberian Peninsula and 

Greece, face comparatively higher risk levels than those cities located in Central and Northern Europe 

within all the three scenarios. 

 

 

5.3 Pluvial flood risk 

Climate models, run at standard resolution, cannot simulate intense hourly rainfall and since Europe-

wide future climate model simulations at convection-permitting scales do not yet exist, there are no 

reliable projections of future intense hourly rainfall for Europe. Therefore, the assessment of future 

changes in the pluvial flooding hazard could not follow a similar methodology to the other impacts in 

this report and was done using a sensitivity analysis (where the same rainfall changes where applied to 

all cities), with severe implications to the interpretation of the risk results (see Section 2.6 above for 

additional details).  

Figure 55 classify the 571 Urban Audit cities according to their relative pluvial flood risk levels under 

a low (left), medium (centre) and high (right) impact scenarios derived from a sensitivity analysis 

where different changes in rainfall intensity were applied. According to the map shown on Figure 55 

(left), some of the cities that have a comparatively higher risk level under a low impact scenario are 

those included in the conurbations of large Mediterranean cities like Barcelona (e.g. Santa Coloma de 

Gramenet, L'Hospitalet de Llobregat, Mataro, Terrassa, Badalona, Sabadell), Lisbon (Sintra and Vila 

Franca de Xira), and Madrid (Fuenlabrada, Mostoles, Getafe). This is motivated by the combination of 

consistently high vulnerability scores and relatively high pluvial hazard and exposure values. A similar 

reasoning also holds for some Baltic (Riga, Daugavpils, Tallinn, Liepaja) and German (Ludwigshafen 

am Rhein, Duisburg, Herne, Frankfurt (Oder), Gelsenkirchen, Mulheim a.d.Ruhr) cities. The only two 

capital cities falling in this category would be Brussel and Prague.  

Reversely, a small group of Urban Audit cities show pluvial flood risk levels that fall persintently 

below the 0.25 percentile, also under a high impact scenario (Figure 55, right). These cities are 

scattered in different countries across Europe, particularly in the Netherlands (Utrecht, Groningen, 

Arnhem, Nijmegen, Zwolle), Norway (Bergen, Trondheim, Kristiansand and Tromso), Poland (Torun, 

Opole, Gorzow, Wielkopolski, Czestochowa, Plock, Gliwice, Bytom, Tychy, Wloclawek, Chorzow, 

Legnica, Grudziadz), and the United Kingdom (Exeter, Plymouth, Warrington, Warwick and Carlisle). 

The only major cities that are classified in this low risk category under the three impact scenarios are 
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Stockholm and Bratislava. All these cities combine comparatively low vulnerability scores and 

relatively low hazard and exposure indices to pluvial floods. 

Looking at the medium impact scenario shown in the central map in Figure 55, it becomes 

apparent that the cities that have relatively higher risk scores are the same ones as those having 

comparatively higher risk in the low impact scenario. The same motivations that have been 

mentioned above, namely consistently high vulnerability scores and relatively high pluvial 

hazard and exposure values, also hold under this high impact scenario for this specific group of 

cities. Additionally, a number of large urban areas, including Bucuresti, London (greater city), 

Athina, Roma, Wien are also classified in the higher risk class. The reason can be found in the 

standardised exposure indices to pluvial flooding, which due to the assumptions made in its 

computation (see Section 3.2.2 for details) are structurally higher in such larger urban 

agglomerations, which is not necessarily associated to higher hazard levels in such areas. 

In general terms, according to the classification of cities in relation to their relative levels of risk 

to pluvial flooding under a medium impact scenario shown in Figure 55 (centre), it seems that 

those cities that have comparatively lower levels of risk to pluvial floods seem to predominate 

in the western (UK, Ireland, the Netherlands, Germany) and northern regions of Europe  

(Nordic countries). But even in these areas the distribution patterns are quite irregular, with an 

uneven distribution of risk scores for this specific impact chain over these two macroregions. A 

paradigmatic example is the UK, where all risk categories are represented by a similar number 

of cities.  
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Figure 55: Pluvial flood risk for the low (left), medium (centre) and high (right) impact scenarios. 

      
Figure 56: Fluvial flood risk for the low (left), medium (centre) and high (right) impact scenarios 
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5.4 Fluvial flood risk 

The maps shown in Figure 56 classify a total of 365 cities with water courses with at least 500km
2
 

catchment area (see Section 2.7.2 above for additional details on the selection method) in four 

categories of risk under a low (left), medium (centre) and high (right) impact scenarios.  

Considering that the fluvial risk construct lacks of a specific exposure dimension, the resulting risk 

scores are highly conditioned by the vulnerability values to this specific threat. Indeed, cities showing 

comparatively higher risk values under the low impact scenario (Figure 56, left), such as Riga, Santa 

Coloma de Gramenet, Daugavpils, Bruxelles / Brussel, Gelsenkirchen, Waterford, Oberhausen, Liege, 

Hamm, Ludwigshafen am Rhein, Praha, Karlovy Vary, Duisburg, Gravesham, Getafe, Offenbach am 

Main, and Frankfurt (Oder)) all show structurally higher levels of vulnerability to fluvial floods. 

As shown in the right map included in Figure 56, some other cities, such as Larisa, Potsdam, 

Wycombe, Sassari, Murcia, Ioannina, Warwick, Toulouse, Bratislava, Stockholm, Kalamata, 

Wloclawek, Catania, Munster, Nijmegen, San Sebastian/Donostia, Granada and Cagliari find 

themselves in the opposite situation (i.e. lower risk level under a high impact scenario). All these areas 

are characterised by lower vulnerability levels to this climate threat, which contributes to moderate the 

final risk scores, even though in some of these urban areas (e.g. Wycombe, Warwick, Stockholm, 

Munster, Nijmegen) the hazard indices to fluvial floods are not negligible under a high impact 

scenario. 

However, the most diverse and expressive situation can be found in the medium impact scenario 

representation shown in Figure 56 (centre). According to this map, the cities that hold comparatively 

higher risk levels to fluvial flooding could be classified in three different groups:  

1. cities showing higher vulnerability and higher to average hazard scores to fluvial flooding: e.g. 

Riga, Daugavpils, Bruxelles / Brussel, Waterford, Gelsenkirchen, Oberhausen, Ludwigshafen 

am Rhein, Hamm, Duisburg Wirral, Liege, Dortmund, Karlovy Vary, Limerick, Gravesham, 

Offenbach am Main, Bottrop, Slough, Antwerpen, Tartu, Witten, Koszalin, Bochum, 

Bremerhaven, Reims, Salzgitter, Krefeld, Nurnberg, Neuss, Zaanstad, Heilbronn, Paris and 

Saint-Etienne; 

2. cities characterised by higher vulnerability values and moderate or even lower hazard scores, 

which are essentially the same ones mentioned above when referring to the low impact 

scenario: e.g. Santa Coloma de Gramenet, Praha, Bucuresti, Getafe, Frankfurt (Oder), Ostrava, 

Presov, Aveiro, Bergamo, Wien, Plzen, Mostoles, Vila Franca de Xira, Zilina, Cartagena, 

Moers, Castellon de la Plana/Castello de la Plana and Budapest; 

3. cities with higher hazard scores and average to lower vulnerability scores: Middlesbrough, 

Cork, Kirklees, Crewe and Nantwich, Galway, Hagen, Telford and Wrekin, London (greater 

city), Salford, Malmo, Newcastle upon Tyne, Essen, Preston, North Tyneside, Lubeck and 

South Tyneside. 

It is also interesting to emphasise the particularities of those cities classified in the low to average risk 

class under a medium impact scenario, according to Figure 56 (centre). This category results from the 

combination of lower vulnerability scores with higher hazard scores, including cities such as Rennes, 

Worcester, Trondheim, Wycombe and Lund, as well as from the integration of lower hazard scores 

with comparatively higher vulnerabilities to fluvial flooding, a sub-category represented by cities such 

as Jerez de la Frontera and Lefkosia. 
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5.5 Coastal flood risk 

Figure 57 presents the resulting coastal flood risk index for 92 Urban Audit cities across Europe. As 

discussed in Section 3.2.3 above, no impact scenarios were used in this case. Results suggest higher 

levels of coastal flood risk in those cities located over the Atlantic, including most part of cities over 

the coasts of Portugal, Spain, France, England and the Baltic republics, but excluding the 

Scandinavian countries, where both hazard and vulnerability levels are inferior. In general terms, the 

coastal cities located in the Mediterranean region face higher risk levels, especially in Spain, but also 

in the northernmost extreme of Italian Adriatic Sea, including the cities of Rimini and Venezia. 

 

 
Figure 57: Coastal flood risk index. 
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6 Conclusions 
 

Increasing availability of continental and global datasets has enabled the development and successful 

application of an EU-wide climate change risk analysis for urban areas, based on the combination of 

hazard, exposure and vulnerability indices derived from state-of-the-art climate modelling techniques 

and the most recent environmental and socio-economic data available. This has been applied to all 571 

Urban Audit cities, enabling their climate change risks to be compared relative to one another.  

The hazard, exposure, vulnerability and risk scores obtained applying this methodology rank cities in a 

consistent, relative, scale for each impact chain. This scoring methodology can be used to assess the 

relative priorities for cities in terms of most significant threats, or whether to focus on measures to 

manage a risk, further characterise a hazard or decrease vulnerability. National and EU policy makers 

are able to use this information to inform the prioritisation of investment in particular risks and 

between different urban areas.  

Risk is not just a function of hazard and exposure levels, but also of socio-economic vulnerabilities. 

For instance, focusing on the heatwaves example it becomes apparent that some cities have relatively 

lower hazard scores but higher exposure – such as Madrid, Sevilla, Murcia – and/or vulnerability – 

like Bruxelles / Brussel, Antwerpen, Gent, Zlin, Nitra, Karlovy Vary, Kladno–, whilst other cities have 

relatively higher hazard and lower exposure – including Novara, Ruda Slaska, Cork, Campobasso, 

Kavala– and/or vulnerability – such as Barcelona, Genova, Munchen, Dublin, Cardiff –. Similar 

conclusions could be drawn focusing on other climate-driven threats, as thoroughly discussed on 

Section 5 above.  

This provides important information on the nature of the potential adaptation strategies that could be 

put in place in each type of cities – whether to focus on engineered adaptation such as flood defences 

and/or strengthening socio-economic capabilities that might include education programmes. Although 

the resolution level of this research does not allow to draw any general conclusion in this respect, the 

methodology itself is scalable and can thus be applied to evaluate risks at multiple levels.  

At this scale of analysis our findings allow to draw the following general conclusions:  

 Heat and drought risks are significant in some places but show regional variability, as socio-

economic vulnerability does. Under the high impact hazard results, increases in heatwave 

hazards and peak temperatures are prevalent across all EU cities. Vulnerabilities to heatwaves 

are related to socio-economic conditions, environmental quality, morphological aspects, and 

awareness and engagement levels. Higher vulnerabilities and risks tend to concentrate in the 

central area of the EU, extending from France along the Rhine, Danube and Po valleys, across 

the Bohemian plain, including also a large part of German cities. 

 Typically cities in Northern European latitudes are less susceptible to unprecedented droughts 

than those in Southern latitudes. Most notably, the variability in hazards exceeds those 

reported by previous analyses which have only been based upon a small number of model 

results. Accordingly, cities exposed to higher risk levels tend to predominate in the southern 

latitudes. This is also a natural consequence of the distribution of vulnerabilities to this threat, 

which is driven by morphological, demographic, economic, social, and awareness and 

commitment factors.  

 In terms of changes in the pluvial flooding hazard, the differences in the percentage of city 

flooded can vary considerably between cities (even though the same change factor for the 
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rainfall was applied for all cities). For example a 50% increase in hourly rainfall (for a 10 year 

return period)  causes changes in percentage of city flooded between 18% and 75% which is 

partially due to the different elevations within each city (besides the different absolute rainfall 

values that a 50% increase associates with).  

 The UK (and parts of Scandinavia) have the most impacted cities in terms of changes in 

fluvial flooding hazard while most of the Mediterranean region does not see any increases, 

even in the high impact scenario.  

 In terms of exposure to coastal flooding, which has been characterised in this report through 

the percentage of urban area exposed to floods due to coastal storm surge events, the most 

impacted cities would be those from the Netherlands (more than 50% of the urban area 

flooded) and those cities located over the costs of Frieseland and Flanders. 

 Vulnerability to floods (all types) is function of place-specific morphological aspects, socio-

economic conditions, awareness levels and city engagement to fight climate change. The 

combination of all these factors depicts a very contextual situation that call for a more detailed 

assessment of urban vulnerabilities to floods. This also holds for flood risks, which are evenly 

distributed across European cities, and thus call for a more detailed assessment at higher 

spatial resolutions.  

 

 

6.1 Advances in high level climate change risk analysis 

This high level approach provides helpful comparative information, however its very nature means 

that it inevitably will not suitable for local risk analysis, or emergency planning. The approach 

developed in RAMSES has made significant advances on previous high level climate change risk 

analysis in that it has: 

 provided a high level climate change risk analysis that captures information on hazard, 

exposure and vulnerability in urban areas; 

 integrated information from multiple climate change hazards; 

 analysed over 50 of the latest generation of climate model runs to explore the variability in 

climate changes; 

 exploited cloud computing power to model hydrodynamic processes using the new pan-

Europe 25m DEM for the flood modelling;  

 developed a coherent, flexible, stable, scalable, transparent and very robust model to 

assess vulnerabilities and risks at different scales based on indicators – but not dependent 

on any particular indicator –; 

 developed a data model for vulnerability assessments based on a dichotomous 

classification of vulnerability factors that minimises redundancy and simplifies 

interpretation; 

 delivered a ranking of European cities relative to each other in terms of their 

vulnerabilities and risks, with respect to a number of pre-defined climate change –driven 

hazards; 

 clustered European cities in a number of coherent and homogeneous groups according to 

the type and intensity of the vulnerabilities and risks faced by each city.  
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6.2 Contribution to RAMSES project 

This task has provided a high level overview of risks to European cities and contributes to the 

overall RAMSES aim to develop a set of innovative methods and tools that will quantify the 

impacts of climate change in EU cities. The work contributes to two of the four RAMSES 

objectives: (1) A strategic frame for evidence-based adaptation decision-making. A pragmatic 

and standardised framework for decision making using comparable climate change impact 

assumptions, impact and adaptation costs while taking account of uncertainty, and (2) Multi-

level analysis–as local administrative units, cities will be used to develop adaptation (and more 

generally sustainable development) strategies from the bottom-up/top-down, that can be 

aggregated to consider costs at the national, EU and international levels. The different layers of 

hazard, climate and vulnerability information provide contextual information for more detailed 

studies in WP3 and other RAMSES WPs.  

 

 

6.3 Research priorities for high level climate change risk analysis 

Despite recent substantial improvements in EU-wide or global datasets – particularly remote sensing 

and satellite data, there is still potential for improvements in data that could greatly enhance the 

accuracy of broad scale climate change risk analysis: 

 Higher spatial resolution, and in particular greater vertical accuracy, of DEMs that cover the 

continent would improve flood model accuracy.  

 Accurate surveys of river depth and width for fluvial flood modelling. 

 Improved understanding of interactions between different sources of flooding, but coastal and 

fluvial interactions in delta and estuary cities in particular. 

 More extensive and readily accessible meteorological records (especially hourly rainfall) and 

river gauging data will help improve the statistical analysis of extreme events. European-wide 

future projections of changes in hourly precipitation would also be ideal; this seems an 

unrealistic goal using current climate models and therefore more research needs to be done for 

finding alternative ways of estimating future changes in intense rainfall. 

 OpenStreetMap provides great potential to complement high resolution DEMs for pluvial 

flood risk analysis as the two combined would enable complex urban features to be modelled. 

This is already feasible where data exists – but this is typically on an individual city basis only 

and limited only to detailed risk assessments. As computing power increases the potential to 

exploit such large and detailed datasets is in reach of a high level analysis. 

 At the continental scale there is limited data on the impacts and costs of extreme events. An 

EU database of observations from extreme events could be used to construct city specific 

and/or national damage functions that relate the magnitude of a hazard to damages. Such 

functions have been developed by the insurance industry but these are generally commercially 

sensitive, and only include insured losses. Public datasets such as EMDAT record events and 

headline impacts but provide insufficient information to construct detailed functions. Similarly 

several countries have collated depth-damage relationships for flooding (e.g. Penning-Rowsell 

et al., 2013) but approaches differ and coverage or data access across Europe is limited. 
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 A major gap in assessing vulnerability is an understanding of what has been done ‘on the 

ground’ in each city. For example, how high are existing flood defences, what design 

standards have been employed for urban drainage etc. In this study, we have assessed adaptive 

capacity (via a number of proxy indicators) to capture this, but a database, possibly 

crowdsourced by individual cities and inhabitants who provide information on risk 

management interventions via an App or a similar tool, would enable much more rigorous risk 

analysis. 

 Further work should also consider a wider range of impacts and exposures. For example, there 

is currently no Europe-wide coverage of all infrastructure – but disruption to infrastructure 

causes a number of cascading impacts that magnify climate change risks.  

 An interdisciplinary research programme for “Broad Scale Climate Risk Modelling” would 

help galvanise a number of activities and innovations that have been developed here and in 

other research. Sectorally, initiatives such as the Global Earthquake Model have brought 

together the earthquake community and provided a focal point for data and simulation 

innovation. Drawing from these and other experiences an EU programme could deliver a 

flexible, scalable and integrated set of climate risk and resilience modelling tools. 

 Neither the indicator-based vulnerability assessment nor the integrated risk analysis presented 

here can be used to make absolute comparisons between different risks. The nature of the 

calculation means that an identical score could have very different implications for e.g. 

flooding and heatwaves. Similarly, this method does not enable comparison between different 

study areas if those risks are calculated independently. These limitations call for the 

development of a new generation of indicator-based vulnerability – and, to some extent, risk 

analysis – that enable cross-temporal, cross-threat and cross-scale comparisons by means of 

standard units of measure and absolute scales. 

 Along these lines, further research is needed on the key determinants of climate change –

related risks. Whereas there is a vast range of literature that characterise climate change –

driven impacts building on the theoretical factors shaping risks at different spatial scales, such 

factors have not been characterised enough through ‘disaster case studies’ (Gall et al., 2014). 

It is thus difficult to build accurate and realistic climate change impact scenarios at the city 

level basing on the underlying risk factors alone. 

 Furthermore, there is much room for improvement in defining more operational ways for 

managing socio-economic uncertainties within traditional IBVAs. The two main 

methodological approaches traditionally used in social sciences to handle uncertainty, namely 

the development of socio-economic scenarios and the construction of probabilistic models 

have limitations, are demanding in terms of time and resource consumption, and are difficult 

to communicate and combine with climatic data. Additional research on this topic should 

focus on the development of alternative simplified approaches for managing socio-economic 

uncertainties and link those with the traditional methods used by climate science. 

 Similarly, further research is needed in order to understand the structural relations of the 

different components of risk at different scales. There is little evidence that the same structural 

relations among the different risk factors that have been documented in this study hold for all 

types of cities in different regions across the EU. It might well be the case that comparable 

underlying factors imply different levels of risk for different groups of cities. A possible way 

forward in this respect would be the elaboration of intermediate –level vulnerability and risk 

analysis based on more homogeneous groups of cities. 
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Appendix A: Data model 
 

Code Description 

Number 

of 

cities13 

Weights per impact chain 
Transformation 

method HW DR FLP FLF FLC 

HWDAYSUNEWI 

Relative change on the 

percentage of days classified 

as heatwaves days between 

1951-2000 and 2051-2100 

for low, medium and high 

impact scenarios 

571 0.33 - - - - Untransformed 

HWMAXUNEWI 

Change in the maximum 

daily maximum temperature 

between 1951-2000 and 

2051-2100 (units: ºC) for 

low, medium and high 

impact scenarios 

571 0.33 - - - - Untransformed 

UHIPIKI 

UHI intensity based on 8-day 

averaged daily mean land 

surface temperature (LST, 

i.e. skin surface temperature) 

data during summer months 

(June-August) 2006-2013. 

Data from MODIS 

(MOD11A2, MYD11A2) 

datasets (Zhou et al., 2013). 

571 0.33 - - - - Square method 

DSI12RCUNEWI 

Relative change on the DSI-

12 indicator (2051-2100 over 

1951-2000) for low, medium 

and high impact scenarios 

571 - 0.50 - - - Untransformed 

DSI12PROBUNEWI 

Probability for any given 

month in the future to be 

above the maximum 

historical DSI-12 indicator 

(2051-2100 over 1951-2000) 

for low, medium and high 

impact scenarios 

571 - 0.50 - - - Untransformed 

FLPUNEWI 

Changes in the percentage of 

city flooded using 0.9, 1.2 

and 1.5 change factors for 

hourly rainfall for 10 year 

return period 

571 - - 1.00 - - Untransformed 

FLFUNEWI 

Changes in the 10 year return 

period of annual maximum 

daily discharge (Q10) 

365 - - - 1.00 - Untransformed 

Table 13:Transformation method and weights applied to each variable included in the hazard 

indices.   

                                                      

 

 
13 Including imputed values. 
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Code Description 
Number 

of cities14 

Weights per impact chain Transformation 

method HW DR FLP FLF FLC 

DE1001V 

Population on the 1st of January 

(last figure available 2004 to 

2013), total 

571 0.50 0.33 - - - Log method 

SA1001V 
Number of conventional 

dwellings 
571 0.50 0.33 - - - 

Square root 

method 

EC2021V All companies 571 - 0.33 - - - Log method 

PEOFLPTECI 

Estimated additional population 

potentially exposed to flooding 

using 0.9, 1.2 and 1.5 change 

factors for hourly rainfall for 10 

year return period 

571 - - 1.00 - - Untransformed 

COFLPIKI 

Coastal flooding. Percentage of 

the city cluster potentially flooded 

due to a 100 year coastal storm 

surge event (Boettle et al., 2016). 

92 - - - - 1.00 Log method 

Table 14:Transformation method and weights applied to each variable included in the 

exposure indices. 

 

 

 

 

 

 

 

 

 

  

                                                      

 

 
14 Including imputed values 
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Code Description 

Number 

of 

cities15 

Weights per impact chain 
Transformation 

method HW DR FLP FLF FLC 

EEASEALI 
Mean soil sealing [%] of UMZ 2006 

of core city (EEA 2012) 
571 - - 0.21 0.22 - 

Quadratic root 

method 

EN2002V 
Number of days ozone O³ 

concentrations exceed 120 µg/m³ 
571 0.07 - - - - Log method 

EN2005V 

Number of days particulate matter 

PM10 concentrations exceed 50 

µg/m³ 

571 0.06 - - - - Log method 

EN2025V 
Accumulated ozone concentration in 

excess 70 µg/m³ 
571 0.07 - - - - 

Square root 

method 

EN2026V 
Annual average concentration of 

NO² (µg/m³) 
571 0.09 - - - - 

Square root 

method 

EN2027V 
Annual average concentration of 

PM10 (µg/m³) 
571 0.05 - - - - 

Square root 

method 

EN3010V 
Price of a m³ of domestic water - 

Euro 
571 - 0.15 - - - Log method 

DE3002I 
Proportion of households that are 1-

person households 
571 0.07 - - - - Untransformed 

DE3005I 
Proportion of households that are 

lone-parent households 
571 0.08 - - - - Log method 

DE3008I 
Proportion of households that are 

lone-pensioner households 
571 0.06 - - - - 

Square root 

method 

DE3016I 
Lone parent households per 100 

households with children aged 0-17 
571 0.07 - - - - 

Square root 

method 

EC1020I Unemployment rate 571 0.12 0.23 0.29 0.29 0.39 Log method 

DE2003I 
Non-EU foreigners as a proportion 

of population 
571 0.06 0.05 0.29 0.29 0.39 Log method 

DE1040I 
Proportion of population aged 0-4 

years 
571 0.05 - 0.09 0.08 0.11 

Square root 

method 

DE1055I 
Proportion of population aged 75 

years and over 
571 0.05 - 0.12 0.12 0.11 

Square root 

method 

EN5101ITECI 

Population density: total resident 

pop. per square km. Indicator built 

basing on GISCO GIS layers and 

Urban Audit population data 

(DE1001V - Population on the 1st 

of January, total) 

571 0.08 0.18 - - - Log method 

SA2013TECI 

Number of deaths per year under 65 

due to diseases of the circulatory or 

respiratory systems per 1000 

inhabitants, based on Urban Audit 

data: SA2013V - Number of deaths 

per year under 65 due to diseases of 

the circulatory or respiratory 

systems and DE1001V - Population 

on the 1st of January, total 

571 0.02 - - - - Log method 

EN3003TECI 

Total use of water (m³ per capita per 

year) basing on Urban Audit data: 

EN3003V - Total use of water - 

m³and DE1001V - Population on 

the 1st of January, total 

571 - 0.18 - - - 
Square root 

method 

DE1001TECI 

Population growth rate over the 

period 2004-2012, basing on 

DE1001V - Population on the 1st of 

January, total retrieved from Urban 

Audit 

571 - 0.21 - - - Square method 

Table 15:Transformation method and weights applied to each variable included in the 

sensitivity indices.   

                                                      

 

 
15 Including imputed values 
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Code Description 

Number 

of 

cities16 

Weights per impact chain 
Transformation 

method HW DR FLP FLF FLC 

EEAGRBLI 
Green/blue urban area [%] UMZ 

2006 of core city (EEA 2012) 
571 0.27 - - - - Untransformed 

EC3039V 
Median disposable annual 

household income - EUR 
571 0.06   0.08 0.11 0.11 0.13 Log method 

EC3040V 
Average disposable annual 

household income - EUR 
571 0.06   0.08 0.11 0.11 0.11 Untransformed 

SA1007I 
Proportion of households living 

in houses 
571 0.06 - - - - 

Square root 

method 

SA1022V 
Average area of living 

accommodation - m²/person 
571 0.03 - - - - Untransformed 

PS3090TECV 
Most people can be trusted 

(synthetic index 0-100)  
571 0.10 0.08 0.11 0.11 0.10 Square method 

PS3120TECV 

City committed to fight against 

climate change (synthetic index 

0-100)  

571 0.10 0.08 0.11 0.11 0.10 Square method 

TE2031TECI 

Proportion of working age 

population qualified at level 5 or 

6 ISCED, basing on Urban Audit 

data: TE2031V - Persons (aged 

25-64) with ISCED level 5 or 6 

as the highest level of education 

and population data: DE1058V - 

Population on the 1st of January, 

25-34 years, total; DE1061V - 

Population on the 1st of January, 

35-44 years, total; DE1064V - 

Population on the 1st of January, 

45-54 years, total; DE1025V - 

Population on the 1st of January, 

55-64 years, total 

571 0.09 0.11 0.16 0.16 0.17 Square method 

AWGCCTECI 

Google hits for the string 

“climate change” (hits per 

thousand inhabitants). Search 

performed in April 2015 using 

the Custom Search JSON/Atom 

API by Google 

571 0.06   0.09 0.12 0.12 0.12 
Square root 

method 

AWGHWTECI 

Google hits for the string “city 

name & climate change & 

heatwave” (hits per million 

inhabitants). Search performed in 

April 2015 using the Custom 

Search JSON/Atom API by 

Google 

571 0.07 - - - - 
Square root 

method 

AWGUHITECI 

Google hits for the string “city 

name & climate change & urban 

heat island” (hits per million 

inhabitants). Search performed in 

April 2015 Custom Search 

JSON/Atom API by Google 

571 0.04 - - - - Log method 

AWGFLOTECI 

Google hits for the string “city 

name & climate change & flood” 

(hits per million inhabitants). 

Search performed in April 2015 

using the Custom Search 

JSON/Atom API by Google 

571 - - 0.13 0.13 - 
Square root 

method 

                                                      

 

 
16 Including imputed values 
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AWGDROTECI 

Google hits for the string “city 

name & climate change & 

drought” (hits per million 

inhabitants). Search performed in 

April 2015 using the Custom 

Search JSON/Atom API by 

Google 

571 - 0.09 - - - 
Square root 

method 

AWGSLRTECI 

Google hits for the string “city 

name & climate change & sea 

level rise” (hits per million 

inhabitants). Search performed in 

April 2015 using the Custom 

Search JSON/Atom API by 

Google 

571 - - - - 0.12 
Square root 

method 

ECSHADIVTECI 

Shannon index of economic 

diversity, basing on Urban Audit 

data on Employment (jobs) in 

NACE sectors (EC2008V to 

EC2038V) 

571 - 0.27 - - - 
Cubic root 

method 

MAYADTECV 

City participating in Mayors 

Adapt initiative, basing on 

http://mayors-adapt.eu/taking-

action/participating-cities/. 

Accessed 23 July 2015 

571 0.06 0.12 0.15 0.15 0.15 Log method 

Table 16:Transformation method and weights applied to each variable included in the 

adaptive capacity indices.  
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Appendix B: Literature review 
 

This Appendix provides a description on the literature review performed in this work. This review 

allowed researchers to: (1) select and characterise the most relevant impact chains to be considered in 

our assessment; (2) identify the most appropriate analytical methods and tools among the ones usually 

used to produce vulnerability and risk assessments at the urban and sub-urban levels, and; (3) choose 

the most meaningful indicators – and proxies – within each risk component. 

The literature review was first based on a cross-reference research of scientific papers citing a reduced 

number of ‘seminal papers’ on vulnerability and risk assessment at the urban level. These papers are 

shown in Table 17. 

 

Concept Seminal paper / report 

The Social 

Amplification of 

Risk 

Kasperson, R. E., Renn, O., Slovic, P., Brown, H. S., Emel, J., Goble, R., … Ratick, S. (1988). The 

Social Amplification of Risk: A Conceptual Framework. Risk Analysis, 8(2), 177–187. 

doi:10.1111/j.1539-6924.1988.tb01168.x 

Vulnerability and 

capability 

Anderson and Woodrow (1989), in Downing, T. E. (1990). Assessing Socioeconomic Vulnerability To 

Famine: Frameworks, Concepts, and Applications. FEWS Working Paper 2.1, (March), 1–129. 

Causal chain of 

hazard 

development 

Dowing (1991). In Dowing, T. E., & Patwardhan, A. (2005). Assessing Vulnerability for Climate 

Adaptation. In Adaptation Policy Frameworks for Climate Change: Developing Strategies, Policies and 

Measures (pp. 69–89). Cambridge, UK, and New York, NY, USA: Cambridge University Press 

The two sides of 

vulnerability: the 

Bohle model 

Bohle (1993) In Villagrán-De-Leon, J. C. (2006). Vulnerability: A conceptual and methodological 

review (No. 4). SOURCE - Studies of the University: Research, Counsel, Education (p. 64).  

Three dimensions 

of vulnerability 

Bohle, H. G., Downing, T. E., & Watts, M. J. (1994). Climate change and social vulnerability. Global 

Environmental Change, 4(1), 37–48. doi:10.1016/0959-3780(94)90020-5 

Pressure and 

Release model 

Wisner, B., Blaikie, P., Cannon, T., & Davis, I. (1994). At risk: natural hazards, people’s vulnerability 

and disasters. London: Routledge. 

The access model 
Wisner, B., Blaikie, P., Cannon, T., & Davis, I. (1994). At risk: natural hazards, people’s vulnerability 

and disasters. London: Routledge. 

Damage functions 
Carreño, M.-L., Cardona, O. D., & Barbat, A. H. (2007). Urban Seismic Risk Evaluation: A Holistic 

Approach. Natural Hazards, 40(1), 137–172. doi:10.1007/s11069-006-0008-8 

Vulnerability 

interactions and 

feedbacks 

Carter TR, La Rovere EL, Jones RN, Leemans R, Mearns LO, Nakı´cenovı´c N, Pittock B, Semenov 

SM, Skea J (2001) Developing and applying scenarios. In: McCarthy JJ, Can- ziani OF, Leary NA, 

Dokken DJ, White KS (eds) Climate change 2001. Impacts, adaptation, and vulnerability. Cam- bridge 
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