European Union flag

Beskrivning

Avsaltning är processen att ta bort salt från hav eller bräckt vatten för att göra det användbart för en rad "bruksdugliga" ändamål, inklusive att dricka. Den kan således bidra till anpassningen till klimatförändringarna under alla de omständigheter då vattenbristen är allvarlig och kan förvärras i framtiden, även på grund av klimatförändringarna. Avsaltning är dock en energiintensiv process. För att undvika felaktig anpassning är det viktigt att avsaltning sker med hjälp av förnybar energi. Avsaltning ger dessutom en biprodukt, saltlake (en koncentrerad saltlösning), som måste bortskaffas på rätt sätt för att undvika negativa effekter på den marina miljön. Avsaltning bör därför endast tillämpas om andra mer miljömässigt hållbara alternativ (t.ex. vattenbegränsningar och vattenransonering, vattenanvändning)inte finns tillgängliga eller inte kan genomföras. 

Avsaltningsteknikerna omfattar följande: 

  • Elektriskt driven teknik. Omvänd osmos är den mest använda tekniken. Den består av filtrering av vatten med osmosmembran som separerar salt från vatten (SWRO). Mata vatten tvingas genom det rullade upp membranet under högt tryck. Andra elektriskt drivna tekniker inkluderar mekanisk ångkompression (MVC) och elektrisk dialys (EDR). 
  • Termiskt driven teknik. Den termiska avsaltningsprocessen använder energi för att avdunsta vatten och därefter kondensera det igen. Termiskt driven teknik omfattarföljande: flerstegs flashdestillation (MSF), multieffektdestillation (MED), termisk ångkompression (TVC) och membrandestillation (MD). 

Det finns för närvarande cirka 16 000 avsaltningsanläggningar över hela världen, med en total global driftskapacitet på cirka 95,37 miljoner m3/ dag och saltlösningsproduktion på 141,5 miljoner m3/ dag. För närvarande används avsaltning till stor del i Mellanöstern och Nordafrika (70 % av den globala kapaciteten), i USA, i allt högre grad i Asien, och endast i begränsad utsträckning i Europa (cirka 10 % av den globala kapaciteten). Flera sydliga EU-länder använder dock avsaltning för att täcka sötvattenbehoven (Jones m.fl., 2019). 

I EU erhålls en liten del av sötvattnet genom avsaltning av havsvatten. EU:s anläggningar kan leverera upp till 2,89 miljarder m3 avsaltat vatten per år (aktiv kapacitet). 71 % av det vatten som produceras används för offentlig vattenförsörjning (2 miljarder m3,4,2 % av det totala vatten som används för offentlig vattenförsörjning). 17 % av det avsaltade vatten som produceras i EU används för industriella tillämpningar, 4 % i kraftverk och 8 % för bevattning. EU:s avsaltningsanläggningar finns främst i Medelhavsländerna, där de kommer att behövas mest i framtiden: Omkring 1 200 anläggningar har en kapacitet på 2,37 miljarder m3 (82 % av EU:s totala avsaltningskapacitet) (Magagna m.fl.,2019). 

Anpassningsdetaljer

IPCC-kategorier
Strukturella och fysiska: Tekniska alternativ
Intressenternas deltagande

Iavsaknad av en obligatorisk miljökonsekvensbedömning finns det enligt EU-lagstiftningeninget formellt samrådsförfarande för sammansättningenav en avsaltningsanläggning. På landsnivå kan berörda parters deltagande i avsaltningsprojekt krävas enligt den särskilda nationella lagstiftning som finns eller aktiveras genom informella processer, t.ex. för att gemensamt identifiera den bästa platsen för en anläggning.

Framgång och begränsande faktorer

Avsaltning är fortfarande den mest energiintensiva vattenreningsmetoden och för att undvika felanpassning måste den kombineras med användning av förnybara energikällor och ökad effektivitet i energianvändningen. 

Elbehovet varierar beroende på avsaltningsteknik, vattenkällans salthalt och den önskade renhetsgraden hos det avsaltade vattnet i slutet av behandlingen. I allmänhet har membranavsaltningsteknik som omvänd osmos (RO) lägre energibehov än termisk teknik som flerstegsblixt (MSF). Våra system kräver ungefär 83–84 kWh/m3 energi, medan storskaliga RO-system kräver 3–5 kWh/m3 för saltvatten och 0,5–2,6 kWh/m3 för bräckt vatten (Olsson, 2012 i Magagna et al, 2019). Som ett resultat är driftskostnaderna höga. Internationella energiorganet har uppskattat att energiförbrukningen för avsaltning på global nivå förväntas öka åttafaldigt fram till 2040 på grund av ökad efterfrågan på sötvatten (Internationellaenergiorganet, 2016). 

Forskningen är inriktad på att öka energieffektiviteten i avsaltningsprocessen och på att öka användningen av ren energi. Metoder som kombinerar avsaltning med förnybar energi omfattar följande: 

  • Kombination av avsaltning och värmekraftproduktion, där spillvärme från kraftverket används som värmekälla för avsaltningsprocessen. 
  • Soldriven avsaltning. Detta alternativ är särskilt lämpat för torrare och soligare regioner, såsom Mellanöstern, Nordafrika och Medelhavsområdet i Europa. I juli 1988 infördes det första destillationssystemet för solceller med flera effekter vid Plataforma Solar de Almería, ett solforskningscentrum i sydöstra Spanien (García-Rodríguezoch Gómez-Camacho, 2001). 
  • Vinddriven avsaltning. till exempel på den grekiska ön Milos, där en vindbaserad avsaltningsanläggning har varit i drift sedan 2007. Enheten har en kapacitet på 3000 m3/ dag. 
  • Avsaltningsanläggningar som drivs med havsenergi. Ett vågdrivet avsaltningssystem planeras till exempel för Kap Verde, utanför Afrikas västkust. Byggherren hävdar att den så kallade Wave20-anläggningen kommer att producera dricksvatten till en tredjedel av priset på konventionella system. 
  • Avsaltningsanläggningar som använder geotermisk energi. Denna energikälla kan generera el och värme, vilket gör den lämplig för både termisk avsaltning och omvänd osmos. Ett projekt på ön Milos (Grekland) visade att geotermisk energi för avsaltning är livskraftig och producerade 1 920 m3färskvatten per dag för lokalsamhället till mycket låga kostnader. 

Utsläpp av saltlake kan ha en negativ inverkan på lokala marina ekosystem eftersom det ökar salthalten i havsvatten. Saltlösning som framställs genom avsaltningsprocessen innehåller kemikalier som används under förbehandlingsfasen. Eftersom saltlake är tyngre än normalt havsvatten ackumuleras den på havsbotten, vilket hotar arter som är känsliga för salthalten. (Europeiskamiljöbyrån, 2012). Forskning undersöker det bästa sättet att lösa eller minimera miljöproblem som orsakas av utsläpp och hantering av saltlake. LIFE ZELDA-projektet visade till exempel den tekniska och ekonomiska genomförbarheten av strategier för hantering av saltlösning som bygger på användning av elektrodialysmetates (EDM) och värdefulla processer för återvinning av föreningar med det slutliga målet att uppnå en process med noll vätskeutsläpp (ZLD). Saltlösning kan också omvandlas till kemikalier som kan återanvändas i själva avsaltningsprocessen (Kumar m.fl., 2019). 

Kostnader och fördelar

De viktigaste kostnadsdrivande faktorerna är använd teknik, energikostnader, anläggningens storlek och konfiguration, kvaliteten på matarvatten och avsaltat vatten samt miljökrav. De flesta av dessa faktorer är platsspecifika till sin natur. Kostnaderna för transport och distribution av vatten är också viktiga, och det finns kostnadsfördelar för anläggningar som ligger nära kusten och på låglänt mark (på grund av lägre energibehov för transporter uppåt, en 100-meters vertikallyft är ungefär lika dyr som en 100-kilometers horisontell transport). 

Sammantaget är termisk avsaltningsteknik, särskilt MSF-anläggningar, mer kapitalintensiva än SWRO. Underhålls- och driftskostnaderna för SWRO-anläggningar för varje produktionsenhet är dock dubbelt så höga som för Läkare Utan Gränsers anläggningar och tre gånger så höga som för MED-anläggningar. För båda teknikerna, men särskilt för termiska anläggningar, är energi långt ifrån den största enskilda återkommande kostnadsposten. Ursprungsvattnets kvalitet (såsom salthalt, temperatur och biofoulingelement) påverkar kostnader, prestanda och hållbarhet, men även den vattenkvalitet som kan uppnås genom avsaltningsprocessen. 

Implementeringstid

Genomförandetiden för avsaltningsanläggningar varierar vanligtvis mellan 3 och 6 år, inklusive alla faser från planering till drift. 

Livstid

Livslängden varierar och beror på vilken tekniksom används. För exempelmembraner måste bytas ut var 2-3 år.

Referensinformation

Webbplatser:
Referenser:

Magagna D., et al., (2019). Vatten – Energisammanlänkningi Europa. Europeiska unionens publikationsbyrå, Luxemburg 

Internationella energiorganet (2016). Nexus för vattenenergi. OECD/IEA 

Världsbanken, (2019). Avsaltningens roll i en allt mer vattenfattig värld. Världsbanken, Washington, DC 

Jones E., (2019). Tillståndet för avsaltning och saltlaksproduktion: ett globalt perspektiv. Vetenskapen om den totala miljön, 657, s. 1343-1356 

Europeiska miljöbyrån, (2012). Mot en effektiv användning av vattenresurserna i Europa. Europeiska miljöbyråns rapport nr 1/2012 

Publicerad i Climate-ADAPT: Apr 12, 2025

Language preference detected

Do you want to see the page translated into ?

Exclusion of liability
This translation is generated by eTranslation, a machine translation tool provided by the European Commission.